Question

When ultraviolet light with a wavelength of 262 nm falls upon a clean metal surface, the stopping potential necessary to terminate the emission of photoelectrons is 0.172 V .What is the photoelectric threshold wavelength for this metal? What is the work function for the metal?

Answer #1

When a monochromatic ultraviolet light with a wavelength of 254
nm falls onto the surface of a particular metal it causes a
photocurrent to flow. A stopping voltage of 2.30 V is required to
totally block the photocurrent.
a. What is the work function of the material?
W = _______ eV
b. What is the cutoff wavelength for this metal?
λ = ________ nm
c. Will light with a wavelength of 523 nm be able to cause a
photocurrent from...

When ultraviolet light with a wavelength of 400 nm falls on a
certain metal surface, the maximum kinetic energy of the emitted
photoelectrons is 1.10 eV .
What is the maximum kinetic energy K0 of the
photoelectrons when light of wavelength 330 nm falls on the same
surface?
Use h =
6.63×10?34J?s for Planck's constant and
c =
3.00×108m/s for the speed of light and
express your answer in electron volts.

Photoelectrons are
observed when a metal surface is illuminated by light with a
wavelength 437 nm. The stopping potential for the photoelectrons in
this experiment is 1.67V.
a. What is the work
function of the metal, in eV?
b. What type of metal
is used in this experiment?
c. What is the maximum
speed of the ejected electrons?

When ultraviolet light with a wavelength of 400 nmnm falls on a
certain metal surface, the maximum kinetic energy of the emitted
photoelectrons is 1.10 eVeV .
What is the maximum kinetic energy K0K0K_0 of the
photoelectrons when light of wavelength 270 nmnm falls on the same
surface?
Use hhh = 6.63×10−34 J⋅sJ⋅s for Planck's constant and
ccc = 3.00×108 m/sm/s for the speed of light and express
your answer in electron volts.

Light with a wavelength of 425 nm falls on a photoelectric surface
that has a work function of 2.00 eV. What is the maximum speed of
any emitted photoelectrons?

When ultraviolet light with a wavelength of 400 nmfalls on a
certain metal surface, the maximum kinetic energy of the emitted
photoelectrons is 1.10 eV .
What is the maximum kinetic energy K0 of the
photoelectrons when light of wavelength 350 nm falls on the same
surface?
Use h = 6.63×10?34 J?s for Planck's constant
and c = 3.00×108 m/s for the speed of light and
express your answer in electron volts.

Light that has a 192 nm wavelength strikes a metal surface, and
photoelectrons are produced moving as fast as 0.002c.
1) What is the work function of the metal? (Express your
answer to three significant figures.)
×10^−19J
2) What is the threshold wavelength for the metal above which no
photoelectrons will be emitted? (Express your answer to three
significant figures.)
nm

a) A photon with a wavelength of 3.00x10-7 m strikes
an electron at rest. The scattered photon has a wavelength of
4.00x10-7 m. Calculate the KE of the electron.
b) Light with a wavelength of 425 nm falls on a photoelectric
surface that has a work function of 2.00 eV. What is the maximum
speed of the ejected electron?
c) A photon of wavelength 43 nm is incident upon a metal in a
photoelectric apparatus. A stopping voltage of 21...

The stopping potential for electrons emitted from a surface
illuminated by light of wavelength 567 nm is 0.932 V. When the
incident wavelength is changed to a new value, the stopping
potential is 2.00 V.
(a) What is this new wavelength?
(b) What is the work function for the surface

The stopping potential for electrons emitted from a surface
illuminated by light of wavelength 500 nm is 0.770 V. When the
incident wavelength is changed to a new value, the stopping
potential is 1.40 V. (a) What is this new
wavelength? (b) What is the work function for the
surface?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 43 seconds ago

asked 2 minutes ago

asked 2 minutes ago

asked 2 minutes ago

asked 6 minutes ago

asked 7 minutes ago

asked 7 minutes ago

asked 8 minutes ago

asked 8 minutes ago

asked 9 minutes ago

asked 9 minutes ago

asked 9 minutes ago