Question

When ultraviolet light with a wavelength of 262 nm falls upon a clean metal surface, the...

When ultraviolet light with a wavelength of 262 nm falls upon a clean metal surface, the stopping potential necessary to terminate the emission of photoelectrons is 0.172 V .What is the photoelectric threshold wavelength for this metal? What is the work function for the metal?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When a monochromatic ultraviolet light with a wavelength of 254 nm falls onto the surface of...
When a monochromatic ultraviolet light with a wavelength of 254 nm falls onto the surface of a particular metal it causes a photocurrent to flow. A stopping voltage of 2.30 V is required to totally block the photocurrent. a. What is the work function of the material? W = _______ eV b. What is the cutoff wavelength for this metal? λ = ________ nm c. Will light with a wavelength of 523 nm be able to cause a photocurrent from...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 330 nm falls on the same surface? Use h = 6.63×10?34J?s for Planck's constant and c = 3.00×108m/s for the speed of light and express your answer in electron volts.
Photoelectrons are observed when a metal surface is illuminated by light with a wavelength 437 nm....
Photoelectrons are observed when a metal surface is illuminated by light with a wavelength 437 nm. The stopping potential for the photoelectrons in this experiment is 1.67V. a. What is the work function of the metal, in eV? b. What type of metal is used in this experiment? c. What is the maximum speed of the ejected electrons?
When ultraviolet light with a wavelength of 400 nmnm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nmnm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eVeV . What is the maximum kinetic energy K0K0K_0 of the photoelectrons when light of wavelength 270 nmnm falls on the same surface? Use hhh = 6.63×10−34 J⋅sJ⋅s for Planck's constant and ccc = 3.00×108 m/sm/s for the speed of light and express your answer in electron volts.
Light with a wavelength of 425 nm falls on a photoelectric surface that has a work...
Light with a wavelength of 425 nm falls on a photoelectric surface that has a work function of 2.00 eV. What is the maximum speed of any emitted photoelectrons?
When ultraviolet light with a wavelength of 400 nmfalls on a certain metal surface, the maximum...
When ultraviolet light with a wavelength of 400 nmfalls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 350 nm falls on the same surface? Use h = 6.63×10?34 J?s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts.
Light that has a 192 nm wavelength strikes a metal surface, and photoelectrons are produced moving...
Light that has a 192 nm wavelength strikes a metal surface, and photoelectrons are produced moving as fast as 0.002c. 1) What is the work function of the metal? (Express your answer to three significant figures.) ×10^−19J 2) What is the threshold wavelength for the metal above which no photoelectrons will be emitted? (Express your answer to three significant figures.) nm
a) A photon with a wavelength of 3.00x10-7 m strikes an electron at rest. The scattered...
a) A photon with a wavelength of 3.00x10-7 m strikes an electron at rest. The scattered photon has a wavelength of 4.00x10-7 m. Calculate the KE of the electron. b) Light with a wavelength of 425 nm falls on a photoelectric surface that has a work function of 2.00 eV. What is the maximum speed of the ejected electron? c) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21...
The stopping potential for electrons emitted from a surface illuminated by light of wavelength 567 nm...
The stopping potential for electrons emitted from a surface illuminated by light of wavelength 567 nm is 0.932 V. When the incident wavelength is changed to a new value, the stopping potential is 2.00 V. (a) What is this new wavelength? (b) What is the work function for the surface
The stopping potential for electrons emitted from a surface illuminated by light of wavelength 500 nm...
The stopping potential for electrons emitted from a surface illuminated by light of wavelength 500 nm is 0.770 V. When the incident wavelength is changed to a new value, the stopping potential is 1.40 V. (a) What is this new wavelength? (b) What is the work function for the surface?