Question

A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across...

A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across a 2.0 m wide horizontal surface, then hits a horizontal spring with spring constant 500 N/m. The ground under the spring is frictionless, but the 2.0 m wide horizontal surface is rough with a coefficient of kinetic friction of 0.25.

a. What is the speed of the box just before reaching the rough surface?

b. What is the speed of the box just before hitting the spring?

c. How far is the spring compressed?

Homework Answers

Answer #1

let's startbwith calculaing teh velocity of mass at the bottom of slide using conservation of energy,

mgh = 1/2 mv^2

v= sqroot ( 2gh) = sqroot ( 2 x 9.8x 5) = 9.899 m/s apprx

a) speed  speed of the box just before reaching the rough surface= 9.899 m/s apprx

b) retdartion expereineced by block owing to rough surface= 0.25. (9.8) = 2,45 m/s^2

speed of the box just before hitting the spring = v^2 = 9.899^2 - 2 (  2,45) ( 2) =97.99 -9.8

v = 9.39 m/s apprx

c) using the conservation of energy

1/2mv^2 = 1/2 kx^2

5( 88.19) = 500 (x)^2

x( spring compressed) =0.939 m apprx

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.5 kg box slides down a 4.8-m -high frictionless hill, starting from rest, across a...
A 4.5 kg box slides down a 4.8-m -high frictionless hill, starting from rest, across a 2.0-m -wide horizontal surface, then hits a horizontal spring with spring constant 520 N/m . The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.0-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.24. Part A What is the speed of the box just before...
A 4.5 kg box slides down a 5.2-m -high frictionless hill, starting from rest, across a...
A 4.5 kg box slides down a 5.2-m -high frictionless hill, starting from rest, across a 2.2-m -wide horizontal surface, then hits a horizontal spring with spring constant 550 N/m . The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.2-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.27. Part A. What is the speed of the box just before...
A 4.5 kg box slides down a 5.2-m -high frictionless hill, starting from rest, across a...
A 4.5 kg box slides down a 5.2-m -high frictionless hill, starting from rest, across a 1.6-m -wide horizontal surface, then hits a horizontal spring with spring constant 540 N/m . The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 1.6-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.27 What is the speed of the box just before reaching the...
A horizontal spring with spring constant 150 N/m is compressed 17 cm and used to launch...
A horizontal spring with spring constant 150 N/m is compressed 17 cm and used to launch a 2.9 kg box across a frictionless, horizontal surface. After the box travels some distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Use work and energy to find how far the box slides across the rough surface before stopping. Express your answer to two significant figures and include the appropriate units.
A block (4 kg) starts from rest and slides down a frictionless ramp #1 of height...
A block (4 kg) starts from rest and slides down a frictionless ramp #1 of height 9 m. The block then slides a horizontal distance of 1 m on a rough surface with kinetic coefficient of friction μk = 0.5. Next, it slides back up another frictionless ramp #2. Find the following numerical energy values: Initial gravitational potential energy on Ramp #1: U1G =  J Tries 0/3 Kinetic energy at bottom of Ramp #1 before traveling across the rough surface: K...
A 2.0 kg stone slides from rest down a hill 5.0 m high and is observed...
A 2.0 kg stone slides from rest down a hill 5.0 m high and is observed to be moving at 6.0 m/s at the bottom. During this process, how much thermal energy have been produced due to the friction?
A solid, spherical ball slides with speed 4.48 m/s across frictionless ice and then encounters a...
A solid, spherical ball slides with speed 4.48 m/s across frictionless ice and then encounters a rough patch with a coefficient of kinetic friction µk = 0.198. The ball is initially not rotating but the friction causes it to start spinning. How far does it slide across the rough spot before it begins to roll without slipping? Express your answer in metres.
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough...
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough horizontal surface until it comes to rest. The coefficient of kinetic friction between the horizontal surface and the crate is 0.27. If the crate’s initial height is 9 m, find the distance it travels on the horizontal surface.
1.A 23 kg box is given a shove across a horizontal surface that gives it an...
1.A 23 kg box is given a shove across a horizontal surface that gives it an initial speed of 6 m/s. The box is eventually brought to rest by friction. The coefficient of kinetic friction in this example is 0.42. How far does the box go after the shove before it stops? ??? m? 2. A 15 kg box is given a shove across a horizontal surface that gives it an initial speed of 18 m/s. The box is eventually...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT