Question

A 1.20 kgkg block is attached to a spring with spring constant 18 N/mN/m . While...

A 1.20 kgkg block is attached to a spring with spring constant 18 N/mN/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 34 cm/scm/s.

What is the amplitude of the subsequent oscillations? What is the amplitude of the subsequent oscillations?

Homework Answers

Answer #1

Initially the block was at rest. The energy imparted to the block by the student is

Substituting m=1.2kg, v=34cm/s=0.34m/s

When the block reaches the maximum displacement, the velocity of the block is zero, the energy of the block is converted into the potential energy.

The potential energy of the spring is

Solving for amplitude

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.850 kg block is attached to a spring with spring constant 18.0 N/m . While...
A 0.850 kg block is attached to a spring with spring constant 18.0 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 31.0 cm/s . What are The amplitude of the subsequent oscillations? The block's speed at the point where x= 0.150 A?
A 0.750 kg block is attached to a spring with spring constant 16 N/m . While...
A 0.750 kg block is attached to a spring with spring constant 16 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 37 cm/s What is the amplitude of the subsequent oscillations? What is the block's speed at the point where x=0.25A?
A 1.35 kg block is attached to a spring with spring constant 18.0 N/m . While...
A 1.35 kg block is attached to a spring with spring constant 18.0 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 50.0 cm/s . What are a) the amplitude of the subsequent oscillations? b) the block's speed at the point where x=0.350 A?
A 1.10 kg block is attached to a spring with spring constant 18.0 N/m . While...
A 1.10 kg block is attached to a spring with spring constant 18.0 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 43.0 cm/s . What is the block's speed at the point where x= 0.650 A? (if the amplitude of the subsequent oscillations is 10.6cm
A 1.40 kg block is attached to a spring with spring constant 16.0 N/m . While...
A 1.40 kg block is attached to a spring with spring constant 16.0 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 44.0 cm/s . What are... A. The amplitude of the subsequent oscillations? B. The block's speed at the point where x= 0.150 A?
A 1.25 kg block is attached to a spring with spring constant 13.0 N/m . While...
A 1.25 kg block is attached to a spring with spring constant 13.0 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 36.0 cm/s . What are Part A The amplitude of the subsequent oscillations? Express your answer with the appropriate units. Part B The block's speed at the point where x= 0.400 A? Express your answer with the appropriate units.
A 1.40 kg block is attached to a spring with spring constant 14 N/m . While...
A 1.40 kg block is attached to a spring with spring constant 14 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 47 cm/s . Part A What is the amplitude of the subsequent oscillations? Express your answer in centimeters. Part B What is the block's speed at the point where x=0.65A? Express your answer in centimeters per second.
A 0.700kg block is attached to a spring with spring constant 16N/m . While the block...
A 0.700kg block is attached to a spring with spring constant 16N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 31cm/s . What is the amplitude of the subsequent oscilllations? What is the block's speed at the point where x= 0.30
A 1.00 kg block is attached to a spring with spring constant 13.5 N/m . While...
A 1.00 kg block is attached to a spring with spring constant 13.5 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 33.0 cm/s . What is the block's speed at the point where x= 0.450 A?
A 1.15 kg block is attached to a spring with spring constant 15 N/m . While...
A 1.15 kg block is attached to a spring with spring constant 15 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 33 cm/s . Part B What is the block's speed at the point where x=0.15A? Express your answer using two significant figures.