Question

Show that the moment of inertial of a solid uniform octant of a sphere of radius...

Show that the moment of inertial of a solid uniform octant of a sphere of radius a is (2/5)ma2 about an axis along one of the straight edges. (Note: This is the same formula as that for a solid sphere of the same radius.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the moment of inertia of a uniform hollow sphere of mass M, inner radius r,...
Find the moment of inertia of a uniform hollow sphere of mass M, inner radius r, and outer radius R > r, about an axis through the center of mass. Consider your answer for the cases r → 0 and r → R. Does the result reduce correctly? Explain.
A 4.8 kg uniform solid sphere has a radius of 32 cm and is initially at...
A 4.8 kg uniform solid sphere has a radius of 32 cm and is initially at rest. It is mounted so that it can rotate about an axis throughout its center of mass. If a constant net torque of 17Nm is applied to the sphere (about its center of mass), then find the power applied to the sphere 2.4s after it begins rotating.
Consider a solid sphere and a solid disk with the same radius and the same mass....
Consider a solid sphere and a solid disk with the same radius and the same mass. Explain why the solid disk has a greater moment of inertia than the solid sphere, even though it has the same overall mass and radius.
A hollow sphere and a solid sphere, both of mass M and radius R, are each...
A hollow sphere and a solid sphere, both of mass M and radius R, are each spinning about an axis through their centers with the same angular speed. If the same braking torque is applied to each, which takes longer to come to a stop? A. hollow sphere B. solid sphere C. They both come to a stop in an equal amount of time.
A small solid sphere of mass M0, of radius R0, and of uniform density ?0 is...
A small solid sphere of mass M0, of radius R0, and of uniform density ?0 is placed in a large bowl containing water. It floats and the level of the water in the dish is L. Given the information below, determine the possible effects on the water level L, (Answer with R-Rises, F-Falls, U-Unchanged, Can also answer with R or U, F or U, F or R or U), when that sphere is replaced by a new solid sphere of...
Water Level A small solid sphere of mass M0, of radius R0, and of uniform density...
Water Level A small solid sphere of mass M0, of radius R0, and of uniform density ?0 is placed in a large bowl containing water. It floats and the level of the water in the dish is L. Given the information below, determine the possible effects on the water level L, (R-Rises, F-Falls, U-Unchanged), when that sphere is replaced by a new solid sphere of uniform density. 1.The new sphere has mass M = M0 and radius R < R0...
A small solid sphere of mass M0, of radius R0, and of uniform density ρ0 is...
A small solid sphere of mass M0, of radius R0, and of uniform density ρ0 is placed in a large bowl containing water. It floats and the level of the water in the dish is L. Given the information below, determine the possible effects on the water level L, (R-Rises, F-Falls, U-Unchanged), when that sphere is replaced by a new solid sphere of uniform density. The new sphere has density ρ = ρ0 and radius R > R0 The new...
A small solid sphere of mass M0, of radius R0, and of uniform density ρ0 is...
A small solid sphere of mass M0, of radius R0, and of uniform density ρ0 is placed in a large bowl containing water. It floats and the level of the water in the dish is L. Given the information below, determine the possible effects on the water level L, (R-Rises, F-Falls, U-Unchanged), when that sphere is replaced by a new solid sphere of uniform density. The new sphere has mass M > M0 and density ρ = ρ0 The new...
A small solid sphere of mass M0, of radius R0, and of uniform density ρ0 is...
A small solid sphere of mass M0, of radius R0, and of uniform density ρ0 is placed in a large bowl containing water. It floats and the level of the water in the dish is L. Given the information below, determine the possible effects on the water level L, (R-Rises, F-Falls, U-Unchanged), when that sphere is replaced by a new solid sphere of uniform density. The new sphere has density ρ = ρ0 and radius R < R0 The new...
A small solid sphere of mass M0, of radius R0, and of uniform density ρ0 is...
A small solid sphere of mass M0, of radius R0, and of uniform density ρ0 is placed in a large bowl containing water. It floats and the level of the water in the dish is L. Given the information below, determine the possible effects on the water level L, (R-Rises, F-Falls, U-Unchanged), when that sphere is replaced by a new solid sphere of uniform density. Options are: R= Rises F= Falls U= Unchnaged F or U R or U F...