Question

Determine the gravitational force between a star with mass equal to 1.97 solar masses and a...

Determine the gravitational force between a star with mass equal to 1.97 solar masses and a planet with mass equal to 1.85 Earth masses if the semi-major axis of the planet's orbit is 2.77 AU. State your answer in Newtons.

Homework Answers

Answer #1

THANKS! PLEASE RATE IT UP

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Planet Yoyo is discovered to orbit around a star with 5 times the mass of our...
Planet Yoyo is discovered to orbit around a star with 5 times the mass of our Sun. It orbits at a distance of 7 AU in a circular orbit. The orbital period is measured to be 8 years. Find: 1) The mass of the planet. Give the answer in both solar masses and kilograms 2) The mass of the star in kilograms 3) The distance of the planets orbit in meters. 4) The force due to gravity between the planet...
Mass(Solar Masses) Semi Major axis(AU) Sun 1 0.004967199691804744 Jupiter 0.0009546133303706552 5.2033630099999995 Considering the following variables of...
Mass(Solar Masses) Semi Major axis(AU) Sun 1 0.004967199691804744 Jupiter 0.0009546133303706552 5.2033630099999995 Considering the following variables of the sun and jupiter. These bodies orbit their barycenter where the semi major axis is from the barycentre If jupiter has an orbital period of T=4331 days,what is the velocity of the sun around the barycentre
Procyon, a 1.5 solar mass main sequence star, has a white dwarf companion of mass 0.6...
Procyon, a 1.5 solar mass main sequence star, has a white dwarf companion of mass 0.6 solar masses. They orbit each other with a period of 40.82 years. What is the distance between the two stars in au?
A planet has a circular orbit around a star of mass M. However, the star just...
A planet has a circular orbit around a star of mass M. However, the star just explodes, projecting its outer envelope at a much greater speed than that of the planet in orbit. Its lost mass can, therefore, be considered as having been lost instantaneously. What remains of the star has a mass M ', always greater than that of the planet. What is the eccentricity of the planet's orbit after the explosion? You can neglect the force exerted on...
a) two masses are separated by the length of 91 meters. the gravitational force between them...
a) two masses are separated by the length of 91 meters. the gravitational force between them is (1.0 x 10^-9). what is each mass? b) a planet has 9/10 the earths mass and 19/20 the earths radius. what is the value of the ratio g-planet/g-earth? m-earth= 5.98 x 10^24 kg r-earth= 6.37 x 10^6 kg
What is the gravitational force between a satellite that has a mass 2500 kg and the...
What is the gravitational force between a satellite that has a mass 2500 kg and the earth while the satellite is 500 miles above the surface of the earth? answer in Newtons
A planet orbits a star of mass 8.72×10^30 kg with a period of 5.72 years. It...
A planet orbits a star of mass 8.72×10^30 kg with a period of 5.72 years. It is also known that the planet has an eccentricity of 0.664. Give Answers in Meters 1. What is the semi-major axis of the planet's orbit? 2. What is the average velocity of the planet in its orbit? 3. What is the distance of the closest approach to its parent start (perihelion)? 4. What is the farthest distance the planet travels away from its parent...
PLEASE ANSWER ALL PARTS WITH APPROPRIATE FORMULAS (EXPLAIN FULLY) 1.) Two equal highly dense spherical masses...
PLEASE ANSWER ALL PARTS WITH APPROPRIATE FORMULAS (EXPLAIN FULLY) 1.) Two equal highly dense spherical masses M = 450 kg are positioned on the y axis (so x=0) at points given by y = -1.20 m and y = +1.20 m. A third small spherical mass m = 100 kg is located on the x axis at x = 0.880 m. Find the net gravitational force on the smaller mass m caused by the other two masses. 2.) The planet...
(a) Find the magnitude of the gravitational force (in N) between a planet with mass 6.75...
(a) Find the magnitude of the gravitational force (in N) between a planet with mass 6.75 ✕ 1024 kg and its moon, with mass 2.60 ✕ 1022 kg, if the average distance between their centers is 2.10 ✕ 108 m. Incorrect: Your answer is incorrect. N (b) What is the moon's acceleration (in m/s2) toward the planet? (Enter the magnitude.) m/s2 (c) What is the planet's acceleration (in m/s2) toward the moon? (Enter the magnitude.) m/s2
We know that most of the mass (>99%) of the solar system is in the Sun....
We know that most of the mass (>99%) of the solar system is in the Sun. Is this consistent with the masses you calculated in the first table, and the solar system rotation curve? Explain your answer. Planet Distance from Sun (AU) Orbital Velocity (km/s) Mass inside orbit = v2r/887 (solar masses) Mercury 0.4 47.4 1.013195 Venus 0.7 35.0 0.966741 Earth 1.0 29.8 1.001172 Mars 1.5 24.1 0.982204 Jupiter 5.2 13.1 1.006056 Saturn 9.6 9.7 1.018335 Uranus 19.2 6.8 1.000910...