Question

A piece of putty of mass m = 0.75 kg and velocity v = 2.5 m/s...

A piece of putty of mass m = 0.75 kg and velocity v = 2.5 m/s moves on a horizontal frictionless surface. It collides with and sticks to a rod of mass M = 2 kg and length L = 0.9 m which pivots about a fixed vertical axis at the opposite end of the rod as shown. What fration of the initial kinetic energy of the putty is lost in this collision?

KElost/KEinitial =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A point object with mass 6 kg and a uniform rigid rod with mass 6 kg  and...
A point object with mass 6 kg and a uniform rigid rod with mass 6 kg  and length 11 meter are on a horizontal frictionless planar surface. Point object hits the rod vertically with velocity 8 m/s and sticks to the rod.   Part A Calculate the angular velocity ω about the center of mass just after the point object with mass m sticks to the rod. Part B Calculate the ratio of the lost energy to the initial kinetic energy of...
Two Balls and a Thin Rod Two balls of mass 2.43 kg are attached to the...
Two Balls and a Thin Rod Two balls of mass 2.43 kg are attached to the ends of a thin rod of negligible mass and length 60 cm. The rod is free to rotate without friction about a horizontal axis through its center. A putty wad of mass 126 gdrops onto one of the balls, with a speed 2.6 m/s, and sticks to it. What is the angular speed of the system just after the putty wad hits? What is...
Two Balls and a Thin Rod Two balls of mass 3.29 kg are attached to the...
Two Balls and a Thin Rod Two balls of mass 3.29 kg are attached to the ends of a thin rod of negligible mass and length 72 cm. The rod is free to rotate without friction about a horizontal axis through its center. A putty wad of mass 127 g drops onto one of the balls, with a speed 2.5 m/s, and sticks to it. What is the angular speed of the system just after the putty wad hits? 1.31×10-1...
Two 2.4 kg balls are attached to the ends of a thin rod of negligible mass,...
Two 2.4 kg balls are attached to the ends of a thin rod of negligible mass, 54 cm in length. The rod is free to rotate in a vertical plane about a horizontal axis through its center. With the rod initially horizontal as shown, a 0.33 kg wad of wet putty drops onto one of the balls with a speed of 3.7 m/sec and sticks to it. 1)What is the ratio of the magnitude of angular momentum of the entire...
Mass m = 0.1 kg moves to the right with speed v = 0.57 m/s and...
Mass m = 0.1 kg moves to the right with speed v = 0.57 m/s and collides with an equal mass initially at rest. After this inelastic collision the system retains a fraction = 0.75 of its original kinetic energy. How much impulse (in units of N sec) does the mass originally at rest receive during the collision? Hints: All motion is in 1D. Ignore friction between the masses and the horizontal surface. You will probably need to use the...
A ball of mass 0.40 kg is fired with velocity 200 m/s into the barrel of...
A ball of mass 0.40 kg is fired with velocity 200 m/s into the barrel of a spring gun of mass 1.5 kg initially at rest on a frictionless surface. The ball sticks in the barrel at the point of maximum compression of the spring. No energy is lost to friction. What fraction of the ball's initial kinetic energy is stored in the spring?
A puck with a mass of 1.2 kg moves with a velocity of 5 m/s in...
A puck with a mass of 1.2 kg moves with a velocity of 5 m/s in the x-direction. It collides with a 1.6 kg puck which is initally stationary. After the collision, the second puck moves at a velocity of 1.44 m/s at an angle of 33 degrees below the x axis. A) What is the angle of the first puck after the collision? B)What is the velocity of the first puck after the collision?
Mass m = 0.1 kg moves to the right with speed v = 0.56 m/s and...
Mass m = 0.1 kg moves to the right with speed v = 0.56 m/s and collides with an equal mass initially at rest. After this inelastic collision the system retains a fraction = 0.79 of its original kinetic energy. How much impulse (in units of N sec) does the mass originally at rest receive during the collision? Hints: All motion is in 1D. Ignore friction between the masses and the horizontal surface. You will probably need to use the...
A small object with a mass of 1.62 kg is moving with a speed of 290...
A small object with a mass of 1.62 kg is moving with a speed of 290 m/s (with respect to the ground) when it collides with a rod with a mass of 11.99 kg and a length of L m. The rod is initially at rest, in a vertical position, and pivots about an axis going through its center of mass which is located exactly halfway along the rod. The object imbeds itself in the rod at a distance L/4...
Mass #1 of 5.0 kg is moving at 2.0 m/s in the + x-direction, and collides...
Mass #1 of 5.0 kg is moving at 2.0 m/s in the + x-direction, and collides with mass #2 of 10. kg that is initially at rest, on a frictionless horizontal surface. They collide elastically. Find each velocity, after the collision.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT