Question

A 4.00 kg block is released from rest on a ramp that is inclined at an...

A 4.00 kg block is released from rest on a ramp that is inclined at an angle of 60.0∘ below the horizontal. The initial position of the block is a vertical distance of 2.00 m above the bottom of the ramp.

Part A) If the speed of the block is 5.00 m/s when it reaches the bottom of the ramp, what was the work done on it by the friction force?: ANS: -28.4J

Part B) If the angle of the ramp is changed but the block is released from a point that is still 2.00 m above the base of the ramp, both the magnitude of the friction force and the distance along the ramp that the block travels change. If the angle of the incline is changed to 50.0∘, does the magnitude of the work done by the friction force increase or decrease compared to the value calculated in part A?: ANS: The magnitude of the work done by friction increases as θ decreases.

Part C) How much work is done by friction when the ramp angle is 50.0???

Homework Answers

Answer #1

apply   work  energy  theorem energy  

Work_by all forces    =change  in  KE

W_gravity + W_friction   = 1/2* m* ( vf^2-vi^2)

mgh + W_friction = 1/2* m*vf^2

4*9.8*2 + W_friction = 0.5*4*5^2

W_friction = 0.5*4*5^2 -4*9.8*2 = -28.4 J answer

work done by friction = f *d = μ *mg*cosθ *d so

if angle θ decreases ,cosθ = increases so work done  increases  

PART C

we need to find out what is μ and d

W_friction =μ *mg*cosθ *d =μ *mg*d *cos60 = 28.4

μ *mg*d = 28.4 /cos60 = 28.4/0.5 = 56.8

so now work done by friction when θ = 50

W_friction = μ *mg*d *cos50 =56.8*cos50 = -36.5103 J answer

*****************************************************************
Goodluck for exam Comment in case any doubt, will reply for sure..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.00 kg block is released from rest on a ramp that is inclined at an...
A 4.00 kg block is released from rest on a ramp that is inclined at an angle of 60.0∘ below the horizontal. The initial position of the block is a vertical distance of 2.00 m above the bottom of the ramp. 1) If the speed of the block is 5.00 m/s when it reaches the bottom of the ramp, what was the work done on it by the friction force? 3) How much work is done by friction when the...
A 13.2kg block is on a ramp, with an incline of θ (a) If the ramp...
A 13.2kg block is on a ramp, with an incline of θ (a) If the ramp is frictionless what is the magnitude of the acceleration of the block down the ramp? (b) If the ramp has a coefficient of static friction of µs = 0.3, at what angle θ will the block start to move? Imagine like the friction lab, you slowly increase the incline of the ramp. (c) Does the angle found in b) depend on mass? (d) What...
A luggage handler pulls a 19.0-kg suitcase up a ramp inclined at 34.0 ∘ above the...
A luggage handler pulls a 19.0-kg suitcase up a ramp inclined at 34.0 ∘ above the horizontal by a force F⃗  of magnitude 161 N that acts parallel to the ramp. The coefficient of kinetic friction between the ramp and the incline is 0.330. The suitcase travels 3.70 m along the ramp. 1.Calculate the work done on the suitcase by F⃗ . 2.Calculate the work done on the suitcase by the gravitational force. 3.Calculate the work done on the suitcase by...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient of friction μ1 = 0.39, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 44°. The block is then compressed against a spring a distance Δx = 0.13 m from its equilibrium point (the spring has a spring constant of k1 = 35 N/m) and released. At the bottom of the inclined plane...
As shown in Figure 1, a block (mass: 2.4 kg) is initially at rest near the...
As shown in Figure 1, a block (mass: 2.4 kg) is initially at rest near the top of an inclined plane, oriented at a 25° angle above the horizontal. The coefficients of static and kinetic friction along the incline are 0.2 and 0.1, respectively. (a) Just after the block is released from rest, draw a free-body diagram for it. (Assume that the block is moving after being released from rest.) (b) Determine the magnitude of the normal force acting on...
A block of weight w = 25.0 N sits on a frictionless inclined plane, which makes...
A block of weight w = 25.0 N sits on a frictionless inclined plane, which makes an angle θ = 20.0 ∘ with respect to the horizontal, as shown in the figure. (Figure 1)A force of magnitude F = 8.55 N , applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed. Part B What is Wg, the work done on the block by the force of gravity w⃗  as the block moves...
A block of weight w = 30.0 N sits on a frictionless inclined plane, which makes...
A block of weight w = 30.0 N sits on a frictionless inclined plane, which makes an angle θ = 35.0 ∘ with respect to the horizontal, as shown in the figure. (Figure 1) A force of magnitude F = 17.2 N , applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed. PLEASE PUT ALL ANSWERS IN JOULES Part A The block moves up an incline with constant speed. What is...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline angled at θ = 30 degrees. The block slides down and incline of length ? = 1.40 m along the incline, which has a coefficient of kinetic friction between the incline and the block of ?? = 0.180. The block then slides on a horizontal frictionless surface until it encounters a spring with a spring constant of ? = 205 N/m. Refer to the...
1. A 2 kg block is on a ramp, and slides down the ramp. The ramp...
1. A 2 kg block is on a ramp, and slides down the ramp. The ramp has angle 30 degrees with respect to the ground and moves the block at a constant velocity. The block has a displacement vector with a magnitude of 6 m. What is the work done on the block by thefrictional force? 2. A 0.2 kg block is on a ramp. The ramp has an angle of 30 degrees with respect to the ground. The block...
You do a physics lab experiment on another planet. A small block is released from rest...
You do a physics lab experiment on another planet. A small block is released from rest at the top of a long frictionless ramp that is inclined at an angle of 36.9° above the horizontal. You measure that a small block travels a distance 15.0 m down the incline in 7.90 s. What is the value of g, the acceleration due to gravity on this planet?