Question

A pendulum with mass 3 kg is swinging back and forth on a 2.0 m string...

A pendulum with mass 3 kg is swinging back and forth on a 2.0 m string and a maximum horizontal displacement of 0.1 m from equilibrium. It passes through its equilibrium point going to the right at time t = 0. a) What will its position be at time t = 3.5 seconds? b) What will its velocity be at time t=3.5 seconds?

Homework Answers

Answer #1

At t = 0 the pendulum is in equilibrium position of x = 0, Hence we can approximate the pendulum motion with a sine function. Hence we can write,

x0 is the maximum displacement, Substituting values we get,

The velocity can be calculated by taking derivative of the above function, from which we get,

(a) Substituting t = 3.5 for the position equation we get,

(b) Substituting t = 3.5 in the velocity equation we get,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simple pendulum with mass m = 2 kg and length L = 2.67 m hangs...
A simple pendulum with mass m = 2 kg and length L = 2.67 m hangs from the ceiling. It is pulled back to an small angle of θ = 11° from the vertical and released at t = 0. 1)What is the period of oscillation? s   2)What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? N   3)What is the maximum speed of the pendulum? m/s   4)What is the angular displacement at...
A simple pendulum is constructed by attaching a 0.460 kg ball to a 0.710 m long...
A simple pendulum is constructed by attaching a 0.460 kg ball to a 0.710 m long cord of negligible mass. If air resistance is negligible and the pendulum is swinging such that its maximum angular displacement is 30.0° determine the following. (a) speed of the ball when it passes through its lowest position (b) tension in the string when the ball is at its highest position (c) tension in the string when the ball is at its lowest position
For the pendulum system below, suppose that the mass of the pendulum bob is 1.0 kg...
For the pendulum system below, suppose that the mass of the pendulum bob is 1.0 kg and the length of the string is 2.0 m. The pendulum is released from rest where θ = 5° = 0.087 rad and it swings back and forth. Assume air resistance is negligible. (A) how man oscillation does the pendulum make in 20.0 seconds? (B) what is the KE of the pendulum at t = 0.160 seconds? (C) at what locations is the pendulum...
A pendulum consists of a 2.5 kg stone swinging on a 4.1 m string of negligible...
A pendulum consists of a 2.5 kg stone swinging on a 4.1 m string of negligible mass. The stone has a speed of 7.9 m/s when it passes its lowest point. (a) What is the speed when the string is at 63 ˚ to the vertical? (b) What is the greatest angle with the vertical that the string will reach during the stone's motion? (c) If the potential energy of the pendulum-Earth system is taken to be zero at the...
A pendulum consists of a 3.8 kg stone swinging on a 4.4 m string of negligible...
A pendulum consists of a 3.8 kg stone swinging on a 4.4 m string of negligible mass. The stone has a speed of 7.8 m/s when it passes its lowest point. (a) What is the speed when the string is at 62 ˚ to the vertical? (b) What is the greatest angle with the vertical that the string will reach during the stone's motion? (c) If the potential energy of the pendulum-Earth system is taken to be zero at the...
A simple pendulum oscillates back and forth with a maximum angular displacement of pi/12 radians. At...
A simple pendulum oscillates back and forth with a maximum angular displacement of pi/12 radians. At t=1.2s, the pendulum is at its maximum displacement. The length (L) of the pendulum is 35cm and the mass (m) of the bob attached to the end of it is 300g. (a) What's the angular frequency of this oscillation? (b) What's the angular position as a function of time? (c) What's the angular speed as a function of time? (d) If damping is introduced...
(1) A simple pendulum oscillates back and forth with a maximum angular displacement of θMax “...
(1) A simple pendulum oscillates back and forth with a maximum angular displacement of θMax “ (pi/12) radians. At t = 1.2s, the pendulum is at its maximum displacement. The length of the pendulum is L = 35cm and the mass of the bob attached to the end of it is m = 300g. (a) What is the angular frequency of this oscillation? (b) What is the angular position as a function of time? (c) What is the angular speed...
A simple pendulum is swinging back and forth through a small angle, its motion repeating every...
A simple pendulum is swinging back and forth through a small angle, its motion repeating every 1.07 s. How much longer should the pendulum be made in order to increase its period by 0.25 s?
A pendulum, with 1 kg mass attached with string of length 1 m is raised to...
A pendulum, with 1 kg mass attached with string of length 1 m is raised to an angle of 30 degrees below the horizontal and then released. Neglect frictional forces. 1. What is the height, h, initially of the pendulum bob? 2. What is the Potential Energy initially? What is the total Energy of the system? 3. What is the velocity of the pendulum when it reaches the bottom of its swing (i.e at 90° from horizontal as also shown...
The length of a simple pendulum is 0.85 m and the mass of the particle (the...
The length of a simple pendulum is 0.85 m and the mass of the particle (the "bob") at the end of the cable is 0.26 kg. The pendulum is pulled away from its equilibrium position by an angle of 7.75° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion. (a) What is the angular frequency of the motion? rad/s (b) Using the position of the bob at its lowest...