Question

You are assigned the design of a cylindrical, pressurized water tank for a future colony on...

You are assigned the design of a cylindrical, pressurized water tank for a future colony on Mars, where the acceleration due to gravity is 3.71 m/s2m/s2. The pressure at the surface of the water will be 145 kPakPa , and the depth of the water will be 13.8 mm . The pressure of the air outside the tank, which is elevated above the ground, will be 87.0 kPakPa .

Part A

Find the net downward force on the tank's flat bottom, of area 2.00 m2m2 , exerted by the water and air inside the tank and the air outside the tank. Assume that the density of water is 1.00 g/cm3g/cm3.

Homework Answers

Answer #1

#Hi, if you are happy and find this useful please thumbs up.  In case, if you have any query regarding the solution please let me know in the comments section below. Thanks!!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You are assigned the design of a cylindrical, pressurized water tank for a future colony on...
You are assigned the design of a cylindrical, pressurized water tank for a future colony on Mars, where the acceleration due to gravity is 3.71 meters per second per second. The pressure at the surface of the water will be 125 kPa , and the depth of the water will be 14.2 m . The pressure of the air in the building outside the tank will be 87.0 kPa . Find the net downward force on the tank's flat bottom,...
You are assigned the design of a cylindrical, pressurized water tank for a future colony on...
You are assigned the design of a cylindrical, pressurized water tank for a future colony on Mars, where the acceleration due to gravity is 3.71 meters per second per second. The pressure at the surface of the water will be 140 kPa , and the depth of the water will be 13.6 m . The pressure of the air in the building outside the tank will be 85.0 kPa . Find the net downward force on the tank's flat bottom,...
A closed and elevated vertical cylindrical tank with diameter 80 cm contains water to a depth...
A closed and elevated vertical cylindrical tank with diameter 80 cm contains water to a depth of 0.900 m . A worker opens a circular hole with diameter 12 cm in the bottom of the tank. As the water drains from the tank, compressed air above the water in the tank maintains a gauge pressure of 5.00×103Pa at the surface of the water. Ignore any effects of viscosity ( ½w = 1000 kg=m3 ). a) (12 points) Just after the...
A closed and elevated vertical cylindrical tank with diameter 2.20 m contains water to a depth...
A closed and elevated vertical cylindrical tank with diameter 2.20 m contains water to a depth of 0.900 m . A worker accidently pokes a circular hole with diameter 0.0180 m in the bottom of the tank. As the water drains from the tank, compressed air above the water in the tank maintains a gauge pressure of 5.00×103Pa at the surface of the water. Ignore any effects of viscosity. Part A Just after the hole is made, what is the...
A closed and elevated vertical cylindrical tank with diameter 1.40 m contains water to a depth...
A closed and elevated vertical cylindrical tank with diameter 1.40 m contains water to a depth of 0.800 m . A worker accidently pokes a circular hole with diameter 0.0140 m in the bottom of the tank. As the water drains from the tank, compressed air above the water in the tank maintains a gauge pressure of 5.00×103Pa at the surface of the water. Ignore any effects of viscosity. Questions 1. How much time does it take for all the...