Question

A 4.4 kg block 2.7 m off the ground sits at the top of the ramp....

A 4.4 kg block 2.7 m off the ground sits at the top of the ramp. It is held and let go at the top of the ramp until it reaches the bottom where it is travelling 5.0 m/s. What is the power of friction on the block if it took the block 2.8 s to make it to the bottom of the ramp?

Homework Answers

Answer #1


please up vote.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
10 kg point mass located at the top of a 1.50 m inclined ramp that is...
10 kg point mass located at the top of a 1.50 m inclined ramp that is without friction. The ramp makes a 30 degree angle with the horizontal. The bottom half of the ramp is on a table and is 0.66 m above the ground. When mass is released from rest, it slides down the ramp ( a=4.9 m/s2 ) & off the table, then goes through the air until it hits the ground. (table & ramp don't move) The...
A 4.00 kg block is released from rest on a ramp that is inclined at an...
A 4.00 kg block is released from rest on a ramp that is inclined at an angle of 60.0∘ below the horizontal. The initial position of the block is a vertical distance of 2.00 m above the bottom of the ramp. 1) If the speed of the block is 5.00 m/s when it reaches the bottom of the ramp, what was the work done on it by the friction force? 3) How much work is done by friction when the...
A 1.2-kg block, travelling at 14.2-m/s, encounters a ramp with a coefficient of kinetic friction of...
A 1.2-kg block, travelling at 14.2-m/s, encounters a ramp with a coefficient of kinetic friction of 0.15. The ramp is tilted 31° above the horizontal. Use work and energy arguments to answer the following. How far along the ramp does the block travel? Assume the coefficient of static friction is very small and the block slides back down the ramp. What is its speed at the bottom?
A 8 kg block sits on a ramp inclined at 12 degrees that has a coefficient...
A 8 kg block sits on a ramp inclined at 12 degrees that has a coefficient of friction of 0.5. A string runs from the block over a pulley at the top of the ramp and then hangs straight down to a suspended weight. If the block slides up the ramp at constant velocity, find the mass of the suspended weight.
A block of mass M sits at rest at the top of a frictionless curved ramp...
A block of mass M sits at rest at the top of a frictionless curved ramp of height h. After being released, the block is moving with speed 4v when it collides with a block of mass 1.5M at the bottom of the ramp. Immediately following the collision, the larger block has a speed 2v. The second block is attached to a vertical rope, and swings freely as a pendulum after the collision. The pendulum string has length L. a)...
A 3.0-kg block sits on top of a 5.0-kg block which is on a horizontal surface....
A 3.0-kg block sits on top of a 5.0-kg block which is on a horizontal surface. The 5.0-kg block is pulled to the right with a force F⃗ . The coefficient of static friction between all surfaces is 0.60 and the kinetic coefficient is 0.37. a) What is the minimum value of F needed to move the two blocks? b) If the force is 10% greater than your answer for (a), what is the acceleration of each block?
A 4.00 kg block is released from rest on a ramp that is inclined at an...
A 4.00 kg block is released from rest on a ramp that is inclined at an angle of 60.0∘ below the horizontal. The initial position of the block is a vertical distance of 2.00 m above the bottom of the ramp. Part A) If the speed of the block is 5.00 m/s when it reaches the bottom of the ramp, what was the work done on it by the friction force?: ANS: -28.4J Part B) If the angle of the...
A 8.00-kg block of ice, released from rest at the top of a 1.08-mm-long frictionless ramp,...
A 8.00-kg block of ice, released from rest at the top of a 1.08-mm-long frictionless ramp, slides downhill, reaching a speed of 2.70 m/s at the bottom. A: What is the angle between the ramp and the horizontal? B: What would be the speed of the ice at the bottom if the motion were opposed by a constant friction force of 10.1 N parallel to the surface of the ramp?
A skateboarder shoots off a ramp with a velocity of 7.2 m/s, directed at an angle...
A skateboarder shoots off a ramp with a velocity of 7.2 m/s, directed at an angle of 59° above the horizontal. The end of the ramp is 1.0 m above the ground. Let the x axis be parallel to the ground, the +y direction be vertically upward, and take as the origin the point on the ground directly below the top of the ramp. (a) How high above the ground is the highest point that the skateboarder reaches? (b) When...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient of friction μ1 = 0.39, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 44°. The block is then compressed against a spring a distance Δx = 0.13 m from its equilibrium point (the spring has a spring constant of k1 = 35 N/m) and released. At the bottom of the inclined plane...