Question

A 55-kg packing crate is pulled with constant speed across a rough floor with a rope...

A 55-kg packing crate is pulled with constant speed across a rough floor with a rope that is at an angle of 41.6 degrees above the horizontal.
Part a:
If the tension in the rope is 165 N how much work is done on the crate by the rope to move it 3.0 m ?
___ J

Homework Answers

Answer #1

Part a: Let the work done on the crate by the rope to move it 3.0 m is W.

Given that the tension on the rope is T=165 N.

The angle made by the rope with the horizontal is =41.6o.

The distance d=3.0 m.

Now the work is done by the rope on the crate

  

The work is done on the crate by the rope to move it 3.0 m is 370.1600548 J or 370.16 J approx.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 55-kg packing crate is pulled with constant speed across a rough floor with a rope...
A 55-kg packing crate is pulled with constant speed across a rough floor with a rope that is at an angle of 41.0 ∘ above the horizontal. If the tension in the rope is 175 N , how much work is done on the crate by the rope to move it 9.0 m ?
A box of mass 730 kg is being pulled at a constant speed across a rough...
A box of mass 730 kg is being pulled at a constant speed across a rough horizontal floor by a constant force, F. The angle of this force above the horizontal is such that the force you apply is a minimum (that is, the amount of force you need to move the box at a constant speed across the floor depends on the angle at which you pull - find the angle which the force is a minimum). Calculate the...
Question 1: A 2-kg wood block is pulled by a string across a rough horizontal floor....
Question 1: A 2-kg wood block is pulled by a string across a rough horizontal floor. The string exerts a tension force of 30 N on the block at an angle of 20º above the horizontal. The block moves at constant speed. If the block is pulled for a distance of 3.0 m, how much work is done by the tension force? Question 2: Part A: A spring-loaded toy gun is used to launch a 12.0-g plastic ball. The spring...
A crate of mass 9.6 kg is pulled up a rough incline with an initial speed...
A crate of mass 9.6 kg is pulled up a rough incline with an initial speed of 1.40 m/s. The pulling force is 98 N parallel to the incline, which makes an angle of 19.5° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.98 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy of the crate–incline system owing to friction....
A crate of mass 9.6 kg is pulled up a rough incline with an initial speed...
A crate of mass 9.6 kg is pulled up a rough incline with an initial speed of 1.52 m/s. The pulling force is 104 N parallel to the incline, which makes an angle of 20.4° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.92 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy of the crate–incline system owing to friction....
A crate of mass 10.2 kg is pulled up a rough incline with an initial speed...
A crate of mass 10.2 kg is pulled up a rough incline with an initial speed of 1.56 m/s. The pulling force is 92 N parallel to the incline, which makes an angle of 19.0° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.04 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy of the crate–incline system owing to friction....
A crate of mass 10.6 kg is pulled up a rough incline with an initial speed...
A crate of mass 10.6 kg is pulled up a rough incline with an initial speed of 1.52 m/s. The pulling force is 94 N parallel to the incline, which makes an angle of 20.2° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.94 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crate–incline system owing to friction. (c)...
A person pulls a 50-kg crate over a displacement of 40-m along a horizontal floor with...
A person pulls a 50-kg crate over a displacement of 40-m along a horizontal floor with a rope of 100N tension. The rope makes an angle of 37o with the horizontal surface. The floor is rough, exerting a friction force of 60 N. (a) Determine the work done by each of the forces acting on the crate. (b) Determine the final speed of the crate assuming it started from rest.
A 110-kg crate, starting from rest, is pulled across a floor with a constant horizontal force...
A 110-kg crate, starting from rest, is pulled across a floor with a constant horizontal force of 380 N . For the first 14 m the floor is frictionless, and for the next 14 m the coefficient of friction is 0.35. What is the final speed of the crate?
A crate of mass m1 = 15.3 kg is pulled by a massless rope up a...
A crate of mass m1 = 15.3 kg is pulled by a massless rope up a 36.9° ramp. The rope passes over an ideal pulley and is attached to a hanging crate of mass m2 = 16.3 kg. The crates move 1.4 m, starting from rest. Find the work done by gravity on the sliding crate. A crate of mass m1 = 12.4 kg is pulled by a massless rope up a 36.9° ramp. The rope passes over an ideal...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT