Question

What angle do electric field lines make with the surface of a charge? At what angle...

  1. What angle do electric field lines make with the surface of a charge?


  1. At what angle do electric field lines cross the equipotential lines?


  1. 3. As you follow the direction of the electric field, does electric potential increase or decrease? Is it the same for both positive and negative charges?

4.  Very near a charge or charge grouping, how are the equipotential lines oriented relative to the surface of the charge(s)?

Homework Answers

Answer #1

1. Electric field always makes angle of 90 degree with the the surface of charge.

2. Electric field lines cross equipotential lines at right angles always.

3. As we go away from a positive charge that is in the direction of increasing electric field then the potential decreases.

As we go towards the negative charge that is in the direction of electric field the potential becomes more negative that is decreases.

4. For point charges equipotential lines oriented relative to the surface of charged are always circular and for a group of charges the ship depends whether the charge is positive or negative or combination of both.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Did any of your field lines cross? Should they? Why, or why not? None of the...
Did any of your field lines cross? Should they? Why, or why not? None of the field lines crossed, nor should they. They are a line of constant potential and the equipotential can have only one value at a given point in space. If the electric field lines were to intersect, they would render a location with two different strong electric field vectors and so would not accurately represent equipotential lines. Did any of your equipotential surfaces cross? Should they?...
Select True or False for the following statements about electric field lines. E-field lines point outward...
Select True or False for the following statements about electric field lines. E-field lines point outward from positive charges. E-field lines point inward toward negative charges. E-field lines may cross. A positive point charge released from rest will initially accelerate along an E-field line. E-field lines make circles around positive charges. E-field lines do not begin or end in a charge-free region except at infinity. Where the E-field lines are dense the E-field must be weak.
2-3 sentences with a full explanation for both questions. Why do electric field lines explain why...
2-3 sentences with a full explanation for both questions. Why do electric field lines explain why like charges repel and opposite charges attract? What is the difference between the direction of field lines originating from positive charges and negative charges?
Do charges released from rest always move along electric field lines; i.e., does the charge stay...
Do charges released from rest always move along electric field lines; i.e., does the charge stay on the E field line at which it started? b) Based on your answer to a), would charges released with an initial velocity always move along electric field lines? c) Using kinematic quantities like position, velocity, and acceleration as well as the concept of a force to describe the general character of the motion of a [+] charge in motion near a single [+]...
Briefly describe how the electric field behaves, for the equipotential line close to the positive charge,...
Briefly describe how the electric field behaves, for the equipotential line close to the positive charge, and away from the + charge. Also describe the one that is close to the negative charge and the one that is at the center of both charges and away from the charge.
Drag a negative charge onto the grid and use the tape measure to place this charge...
Drag a negative charge onto the grid and use the tape measure to place this charge 0.5 m directly to the right of the positive charge. Drag a Voltmeter back onto the grid. Use the tape measure and the sensor to measure the electric potential at a distance of 0.5 m directly above the negative charge. Record below. V=___5.760V______           Use what we’ve learned in class to calculate the electric potential at this location. Show all work below. ( 1nC =...
1. Why can electric fields not cross each other? A. Many electric field lines can exist...
1. Why can electric fields not cross each other? A. Many electric field lines can exist at any given point in space. B. No electric field lines can exist at any given point in space. C. Only a single electric field line can exist at any given point in space. D. Two electric field lines can exist at the same point in space. 2. By considering the molecules of an insulator, explain how an insulator can be overall neutral but...
Which of the following statements is/are true regarding behaviors of charged particles inside electric field? Positive...
Which of the following statements is/are true regarding behaviors of charged particles inside electric field? Positive charges are accelerated by electric fields toward points at higher electric potential; If the electric field at a certain region is zero, then the electric potential at the same region is constant; If a negative charge moves in the direction of the electric field, the field does positive work and the potential energy increases If a positive charge moves opposite to the electric field,...
Which of the following is a correct statement? (1 point) The direction of the electric field...
Which of the following is a correct statement? (1 point) The direction of the electric field due to a negative point charge is directed away from the charge. The direction of the electric force on a positive charge is opposite to the direction of the electric field at its location. The magnitude of the electric field due to a point charge is inversely proportional to the square of the distance between the charge and the point. The unit of measurement...
1.The electric field at a distance of 2 mm from a test charge is _____the field...
1.The electric field at a distance of 2 mm from a test charge is _____the field at a distance of 4 mm a. The same as b twice as strong as c four times as strong as d 1/4 as strong as e have as strong ass 2. an electrical field contains two charges ANB. If the charges are doubled to be to a N to be, what would happen to the force on charge a? a The same as...