Question

If the height of a disk were somehow doubled while the radius is halved, and the...

If the height of a disk were somehow doubled while the radius is halved, and the mass stayed the same, how would the moment of inertia change?

Homework Answers

Answer #1

Moment of inertia is depend on the radius and the mass of the disk .

It is no relate with the height of the disk

Now the moment of inertia of the disk having mass M and radius r is

Now the radius of the disk will become half i.e

R' = R/2

And mass has been unchange

Then the moment of inertia will become I'

This is the new moment of inertia of the disk

i.e

I' = I/8

i.e the moment of inertia will become 1/8 times the initial moment of inertia .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a solid sphere and a solid disk with the same radius and the same mass....
Consider a solid sphere and a solid disk with the same radius and the same mass. Explain why the solid disk has a greater moment of inertia than the solid sphere, even though it has the same overall mass and radius.
A solid circular disk has a mass of 1.2 kg and a radius of 0.19 m....
A solid circular disk has a mass of 1.2 kg and a radius of 0.19 m. Each of three identical thin rods has a mass of 0.13 kg. The rods are attached perpendicularly to the plane of the disk at its outer edge to form a three-legged stool (see the drawing). Find the moment of inertia of the stool with respect to an axis that is perpendicular to the plane of the disk at its center. (Hint: When considering the...
A 3 kg disk of radius 0.25 m is rotating freely at an angular speed of...
A 3 kg disk of radius 0.25 m is rotating freely at an angular speed of 100 rad/s on a shaft passing through the center if mass of the disk. A 2 kg solid ball of the same radius, initially not rotating, slides down the shaft (the shaft passes through the ball's center of mass) and is coupled to the disk. Assuming that the rotational inertia is of the shaft is negligible, a) what is the angular speed of the...
A uniform disk of mass Mdisk = 4 kg and radius R = 0.24 mhas a...
A uniform disk of mass Mdisk = 4 kg and radius R = 0.24 mhas a small block of mass mblock = 2.2 kg on its rim. It rotates about an axis a distance d = 0.16 m from its center intersecting the disk along the radius on which the block is situated. What is the moment of inertia of the block about the rotation axis? What is the moment of inertia of the disk about the rotation axis? When...
1. A disk of mass M=160kg and radius R=0.40m spins with an initial rate of 12...
1. A disk of mass M=160kg and radius R=0.40m spins with an initial rate of 12 revolutions per second. Because of friction in the bearing, the disk slows down at a uniform rate. After 20 minutes it comes to a stop. (a) How many revolutions does the disk make before coming to rest? (b) What is the moment of inertia of the disk? (c) Find the angular acceleration of the disk as it slows down. (d) Find the torque that...
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R=...
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R= 0.5 m) are placed at the top of an incline at height (h= 10.0 m). The objects are released from rest and rolls down without slipping. a) The solid disk reaches to the bottom of the inclined plane before the hoop. explain why? b) Calculate the rotational inertia (moment of inertia) for the hoop. c) Calculate the rotational inertia (moment of inertia) for the...
A uniform disk has a mass of 9 kg and a radius of 20 cm. It...
A uniform disk has a mass of 9 kg and a radius of 20 cm. It completes 15 revolutions in 11 seconds when starting from rest. (12 points) a. Find the angular acceleration of the disk. b. Find the moment of inertia of the disk. c. Find the net torque on the disk.
QUESTION 27 A uniform disk of radius 0.40 m and mass 31.0 kg rolls on a...
QUESTION 27 A uniform disk of radius 0.40 m and mass 31.0 kg rolls on a plane without slipping with angular speed 3.0 rad/s. The rotational kinetic energy of the disk is __________. The moment of inertia of the disk is given by 0.5MR2.
A uniform, solid disk of mass M=4 kg and radius R=2 m, starts from rest at...
A uniform, solid disk of mass M=4 kg and radius R=2 m, starts from rest at a height of h=10.00 m and rolls down a 30 degree slope as shown in the figure. a) Derive the moment of inertia of the disk. b) What is the linear speed of the ball when it leaves the incline? Assume the ball rolls without slipping.
You look down on a spinning disk with mass M and radius R. recall a disk...
You look down on a spinning disk with mass M and radius R. recall a disk has moment of inertial (1/2)MR^2. The disk is spinning on a frictionlessly (supported on a perfect air hockey table). The disk is spinning at 21.00rad/s. A hoop (at rest--not spinning) with the same mass and same radius is centered over the disk and dropped on the disk --- where the hoop sticks to the disk. What is the final angular speed (in Rad/s) of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT