Question

There are three charges at the three vertices of equilateral triangles as it is show in...

There are three charges at the three vertices of equilateral triangles as it is show in the figure below. The purpose of this problem is to find the Net force acting on Q 3 by Q 1 and Q 2 . Q 1 = - 10 nC 1 nC = 10 – 9 C Q 2 = + 2.0 nC Q 3 = + 3.0 nC The length of each side of the triangle is : r = 4.0 Cm = 4.0 x10-2 m Electric constant K= 9x10 9 N.m2 / C2 ?⃗ = K Q1 Q2 / r2 ̂? Q3 a) Calculate the force that Q1 exerts on Q 3 . Name this force ?⃗ 1 , show your formula and solution below this line. b) Calculate the force that Q2 exerts on Q 3 . Name this force ?⃗ 2 , show your formula and solution below this line. c) Draw the force vectors ?⃗⃗ 1 and ?⃗⃗ 2 on the figure ( This is the most important part of the problem) d) Resolve force ( ?⃗ 1 ) to its X-component and Y- components. Write the formula, calculate the magnitude for each component, and replace it in the formula given in the Hint.Hint: ?⃗⃗ 1 = F1X ̂? + F1Y ̂? Show your work. e) Resolve force ( ?⃗ 2 ) to its X-component and Y- components. Write the formula, calculate the magnitude for each component, and replace it in the formula given in the Hint. Hint: ?⃗⃗ 2 = F2X ̂? + F2Y ̂? Show your work.e) Calculate the net force in X-direction and Y-direction. Hint: ?⃗⃗ (net) =FX (net) ̂? + FY(net) ̂? Show your work. f) Use Pythagorean Theorem to find the magnitude of F(net) acting on Q3 . g) Use θ= tang ( F (net) Y / F (net) X ) to calculate the angle the force makes with X –Axis.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
#1 The three charges are at the three vertices of a right triangle as shown in...
#1 The three charges are at the three vertices of a right triangle as shown in the figure below. q 1 = + 3.0 µC q 2 = - 3 .0 µC q 3 = - 2 .0 µC 1 µC = 10-6 Right Triangle: q1 to q2 = 5.0m/ q1 to q3 = 3.0m / q2 to q3 = 4.0m Formulas: K = 9.0 X 10 9 N m2/ C2 Fx = F cos θ Fy = F sin...
Three point charges lie in the x-y plane as shown in the diagram below: q1= 84.7...
Three point charges lie in the x-y plane as shown in the diagram below: q1= 84.7 μC and is located at the origin; q2= 38.3 μC and is located at x = 3.21 m and y = 0; q3= -20.9 μC and is located at x = 1.41 m and y = 2.41 m. A force diagram showing the forces acting on q1 and a coordinate system are given in the diagram. Calculate the y-component of the net electrostatic force...
Three point charges are arranged as shown in the figure to the right. Charge q1 =...
Three point charges are arranged as shown in the figure to the right. Charge q1 = +2.0 nC and is located on the y-axis at y = 3.0 m, charge q2 = +6.0 nC and is located on the x-axis at x = 2.0 m, and charge q3 = -5.0 nC and is located at x = +2 m, y = +3.0 m. (a) What is the net force (magnitude and direction) acting on charge q3? (b) What is the...
Three point charges lie in the x-y plane as shown in the diagram below: q1= 90.3...
Three point charges lie in the x-y plane as shown in the diagram below: q1= 90.3 μC and is located at the origin; q2= 35.7 μC and is located at x = 3.01 m and y = 0; q3= -19.5 μC and is located at x = 1.21 m and y = 2.21 m. A force diagram showing the forces acting on q1 and a coordinate system are .Calculate the y-component of the net electrostatic force acting on q1 due...
Three charged particles are placed at each of three corners of an equilateral triangle whose sides...
Three charged particles are placed at each of three corners of an equilateral triangle whose sides are of length 3.4 cm . Two of the particles have a negative charge: q1 = -7.8 nC and q2 = -15.6 nC . The remaining particle has a positive charge, q3 = 8.0 nC . What is the net electric force acting on particle 3 due to particle 1 and particle 2? 1) Find the net force acting on particle 3 due to...
You have three charges that are placed in a equilateral triangles corners. The sides of the...
You have three charges that are placed in a equilateral triangles corners. The sides of the triangle are 2 dm. q1=2.2µC q2= -4.4µC q3= 3.3 µC If we introduce a coordinate system where q3 is located in origin, q1 located in (0.20m , 0m) and q2 is located in (0.10m, y*0.20m) where y >0 is a real number. What is the value of y and what is direction does the total force from q1 and q2 on q3? If there...
Coulomb's law for the magnitude of the force F between two particles with charges Q and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′ separated by a distance d is |F|=K(|QQ′|/d^2) where K=1/(4πϵ0), and ϵ0=8.854×10^−12 C^2/(N⋅m^2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -17.5 nC , is located at x1= -1.735 mm ; the second charge, q2 = 36.5 nC , is at the origin (x = 0). What is (Fnet3)x, the x-component of the...
Three charged particles are placed at each of three corners of an equilateral triangle whose sides...
Three charged particles are placed at each of three corners of an equilateral triangle whose sides are of length 2.0 cm . Two of the particles have a negative charge: q1= -6.1 nC and q2 = -12.2 nC . The remaining particle has a positive charge, q3 = 8.0 nC. What is the net electric force acting on particle 3 due to particle 1 and particle 2? Find the net force ΣF⃗ 3 acting on particle 3 due to the...
Coulomb's law for the magnitude of the force F between two particles with charges Q and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′ separated by a distance d is |F|=K |QQ'|/d2 where K=1/4πϵ0 , and ϵ0=8.854×10-12 C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -17.0 nCn, is located at X1 = -1.680 m ; the second charge, q2 = 30.0 nC , is at the origin (x = 0). What is (Fnet3)x, the x-component...
Coulomb's law for the magnitude of the force Fbetween two particles with charges Q and Q′separated...
Coulomb's law for the magnitude of the force Fbetween two particles with charges Q and Q′separated by a distance d is |F|=K|QQ′|/d^2, where K=1/4πϵ0, and ϵ0=8.854×10^−12C^2/(N⋅m^2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -19.0 nC , is located at x1 = -1.665 m ; the second charge, q2 = 36.0 nC ,is at the origin (x=0.0000). What is the net force exerted by these two charges on a...