Question

Example for perfectly inelastic collision A 2 kg ball which is moving at a speed of...

Example for perfectly inelastic collision

A 2 kg ball which is moving at a speed of 10 m/s strikes a 2 kg ball which is at rest. What is the speed of the balls after the collision. What is the momentum. what is the center of mass.

Example for totally elastic collision

A 2 kg ball which is moving at a speed of 10 m/s strikes a 2 kg ball which is at rest. What is the speed of the balls after the collision. What is the momentum. what is the center of mass.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ball 1 has a mass of 0.1 kg and is moving with a speed of 2.5...
Ball 1 has a mass of 0.1 kg and is moving with a speed of 2.5 m/s. It collides head-on with ball 2, which has a mass of 0.3 kg ball and is initially moving toward ball 1 with a speed of 0.75 m/s. Assume a perfectly elastic collision. Calculate the velocities of the two balls after their collision and the total change in the momentum of the system. Be careful with your coordinate system in your math! Give your...
A 0.060 kg tennis ball, moving with a speed of 7.10 m/s has a head-on collision...
A 0.060 kg tennis ball, moving with a speed of 7.10 m/s has a head-on collision with a 0.080 kg ball initially moving away from it in the same direction at a speed of 3.40 m/s. Assuming a perfectly elastic collision, What is the velocity of the tennis ball after the collision? (Take the initial direction of the balls as positive.) m/s What is the velocity of the 0.080 kg ball after the collision? m/s
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides with another ball with mass m = 2.5 kg which is initially stationary. There is no other force such as gravity acting on the two balls. After the collision, both balls move at angle θ=30 degrees relative to initial direction of motion of the ball with mass M = 5 kg. a) What are the speeds of the two balls after the collision? b)...
A ball of mass 0.440 kg moving east (+x direction) with a speed of 3.60 m/s...
A ball of mass 0.440 kg moving east (+x direction) with a speed of 3.60 m/s collides head-on with a 0.260 kg ball at rest. If the collision is perfectly elastic, what will be the speed and direction of each ball after the collision?
A 0.060-kg tennis ball, moving with a speed of 5.6 m/s , has a head-on collision...
A 0.060-kg tennis ball, moving with a speed of 5.6 m/s , has a head-on collision with a 0.10-kg ball initially moving in the same direction at a speed of 3.4 m/s . Assuming a perfectly elastic collision, determine the speed of each ball after the collision.
A 0.060-kg tennis ball, moving with a speed of5.62 m/s , has a head-on collision with...
A 0.060-kg tennis ball, moving with a speed of5.62 m/s , has a head-on collision with a0.090-kg ball initially moving in the same direction at a speed of 3.06 m/s . Assume that the collision is perfectly elastic. Determine the speed of the 0.060-kg ball after the collision. Determine the direction of the velocity of the 0.060-kg ball after the collision. Determine the speed of the 0.090-kg ball after the collision.Determine the direction of the velocity of the 0.090-kg ball...
A 0.060-kg tennis ball, moving with a speed of 5.12 m/s , has a head-on collision...
A 0.060-kg tennis ball, moving with a speed of 5.12 m/s , has a head-on collision with a 0.085-kg ball initially moving in the same direction at a speed of 3.40 m/s . Assume that the collision is perfectly elastic. A)  Determine the speed of the 0.060-kgkg ball after the collision. B) Determine the speed of the 0.085-kgkg ball after the collision. C) Determine the direction of the velocity of the 0.085-kgkg ball after the collision.
A ball of mass 0.484 kg moving east (+xdirection) with a speed of 3.76 m/s collides...
A ball of mass 0.484 kg moving east (+xdirection) with a speed of 3.76 m/s collides head-on with a 0.242 kg ball at rest. Assume that the collision is perfectly elastic.    A)What is be the speed of the 0.484-kg ball after the collision? B)What is be the direction of the velocity of the 0.484-kg ball after the collision? C)What is the speed of the 0.242-kg ball after the collision? D)What is the direction of the velocity of 0.242-kg ball after...
Billiard ball A of mass mA = 0.125 kg moving with speed vA = 2.80 m/s...
Billiard ball A of mass mA = 0.125 kg moving with speed vA = 2.80 m/s strikes ball B, initially at rest, of mass mB = 0.138 kg . As a result of the collision, ball A is deflected off at an angle of θ′A = 30.0∘ with a speed v′A = 2.10 m/s, and ball B moves with a speed v′B at an angle of θ′B to original direction of motion of ball A. (a) Solve these equations for...
Billiard ball A of mass mA = 0.130 kg moving with speed vA = 2.65 m/s...
Billiard ball A of mass mA = 0.130 kg moving with speed vA = 2.65 m/s strikes ball B, initially at rest, of mass mB = 0.140 kg . As a result of the collision, ball A is deflected off at an angle of 30.5 ∘ with a speed vA1 = 2.35 m/s . C.) Solve for the speed, vB1, of ball B. Do not assume the collision is elastic. D.) Solve for the angle, θB, of ball B. Do...