Question

Biomechanics! A) A picture holding a ball, rotates his arm at an angular velocity of 50...

Biomechanics!

A) A picture holding a ball, rotates his arm at an angular velocity of 50 radians/sec. If his arm is 0.8 meters in length calculate how high a ball would reach if the ball was released vertically. (HINT: first calculate the initial velocity then treat it like a vertical projection problem)?

B) Skater on team A, (mass 80 kg), is moving at a velocity of 12 m/sec collides with skater on Team B, (mass 75 kg) moving in the opposite direction. The two now move together at a velocity of 3 m/sec, in the direction that player on Team B was originally moving. What was the team B skater original velocity?

Homework Answers

Answer #1

A. v= rw

Where v = linear speed, r= radius, w=angular velocity

v=0.8*50= 40 m/s

This speed will become the initial velocity of projection when projected upwards

use v^2= u^2 +2as , s=displacement,u=starting velocity ,v=final velocity,a=acceleration(In this case its acceleration due to gravity -9.8 m/s^2 , At the top most height it will stop for a moment so final velocity =0

0^2= 40^2 -2*9.8*s

s= 81.63 m

B. Lets apply law of conservation of linear momentum

m1u1 + m2u2 = m1v1 + m2v2 (m=being masses, u=starting velocities ,v=final velocities) ,We take velocity of A to be positive and velocity of B to be negative.

80*12 -75 u2 = -80*3-75*3

u2= 19 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.15 kg baseball collides with a 1.0 kg bat. The ball has a velocity of...
A 0.15 kg baseball collides with a 1.0 kg bat. The ball has a velocity of 40 m/s immediately before the collision. The center of mass of the bat also has a velocity of 40 m/s, but in the opposite direction, just before the collision. The coefficient of restitution between the bat and the ball is 0.50. Estimate how fast the baseball is moving as it leaves the bat following the collision.
A ball of mass 2 kg is moving with a velocity of 12 m/s collides with...
A ball of mass 2 kg is moving with a velocity of 12 m/s collides with a stationary ball of mass 6 kg and comes to rest. calculate the velocity of the 6 kg ball after the collision. (both balls are elastic)
A bowling player throws a ball of mass 7 kg with a velocity of 5m/s and...
A bowling player throws a ball of mass 7 kg with a velocity of 5m/s and collides a pin of mass 1.6 kg. The ball and pin move seperately after the collision. a) What is the momentum of the ball before the collision b) Calculate the total momentum of the ball and the pin before the collision c) What is tge velocity of the pin after the collision if the velocity of the ball is 3 m/s.
A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s on a frictionless...
A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s on a frictionless table, collides head-on with a stationary 6.90-kg ball. Find the final velocities of (a) the 1.10-kg ball and of (b) the 6.90-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s on a frictionless...
A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s on a frictionless table, collides head-on with a stationary 6.70-kg ball. Find the final velocities of (a) the 1.40-kg ball and of (b) the 6.70-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.70-kg ball, moving to the right at a velocity of +1.51 m/s on a frictionless...
A 1.70-kg ball, moving to the right at a velocity of +1.51 m/s on a frictionless table, collides head-on with a stationary 8.10-kg ball. Find the final velocities of (a) the 1.70-kg ball and of (b) the 8.10-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 4.30-kg ball, moving to the right at a velocity of +3.01 m/s on a frictionless...
A 4.30-kg ball, moving to the right at a velocity of +3.01 m/s on a frictionless table, collides head-on with a stationary 8.50-kg ball. Find the final velocities of (a) the 4.30-kg ball and of (b) the 8.50-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 4.80-kg ball, moving to the right at a velocity of +1.26 m/s on a frictionless...
A 4.80-kg ball, moving to the right at a velocity of +1.26 m/s on a frictionless table, collides head-on with a stationary 8.20-kg ball. Find the final velocities of (a) the 4.80-kg ball and of (b) the 8.20-kg ball if the collision is elastic. (c)Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.00-kg ball, moving to the right at a velocity of +1.35 m/s on a frictionless...
A 1.00-kg ball, moving to the right at a velocity of +1.35 m/s on a frictionless table, collides head-on with a stationary 8.00-kg ball. Find the final velocities of (a) the 1.00-kg ball and of (b) the 8.00-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
a 1.2 kg ball moving with a velocity of 8.0m/s collides head on with a stationary...
a 1.2 kg ball moving with a velocity of 8.0m/s collides head on with a stationary ball and bounces back at a velocity or 4.0 m/s. If the collision is perfectly elastic, calculate (a) the mass of the other ball (b) the velocity of the other ball after the collision (c) the momentum of each ball before and after the collision (d) the kinetic energy of each ball before and after the collision
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT