Question

1. If a cycle begins at a certain position, it ends when the object a. next...

1. If a cycle begins at a certain position, it ends when the object

a. next returns to this position.

b. next travels in the same direction.

c. next returns to this position while traveling in the same direction.

d. passes through the equilibrium position for the second time.

2. A bob oscillates on a vertical spring. If the frequency of the motion is two cycles per second, the period is

a. also two cycles per second.

b. one second.

c. two seconds.

d. one-half second.

3. As you increase the frequency of putting your finger into water, the wavelength of the water waves

a. increases.

b. decreases.

c. stays the same.

4.For small amplitudes, the period for the motion of an object on a spring is ____ the value of the spring constant

a. proportional to

b. proportional to the square root of

c. inversely proportional to the square root of

d. inversely proportional to

Homework Answers

Answer #1

1) If a cycle begins at a certain position, it ends when the object next returns to this position while traveling in the same direction.

2) A bob oscillates on a vertical spring. If the frequency of the motion is two cycles per second, the period is 1/f = 1/2 seconds

that is one-half second.

3) As you increase the frequency of putting your finger into water, the wavelength of the water waves decreases. The speed of the waves remains the same, hence the product of frequency and wavelength should not change. so if frequency increases, then wavelength must decrease.

4) .For small amplitudes, the period for the motion of an object on a spring is inversely proportional to the square root of the value of the spring constant

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The position of a 0.30 - kg object attached to a spring is described by x...
The position of a 0.30 - kg object attached to a spring is described by x = (0.25 m) cos ( 0.4 pie t). Find: a) The amplitude of the motion; b ) Frequency and Period of the motion; c) Position of the object at t=.30 sec ; d) Speed of the object at t = .30sec.; E) Acceleration of the object at t = .30 sec.
The position of a 0.30 - kg object attached to a spring is described by x...
The position of a 0.30 - kg object attached to a spring is described by x = (0.25 m) cos ( 0.4 π t ). Find: a) The amplitude of the motion; b) Frequency and Period of the motion; c) Position of the object at t = .30 sec. d) Speed of the object at t = .30 sec. e) Acceleration of the object at t = .30 sec
The position of a 0.30 - kg object attached to a spring is described by x...
The position of a 0.30 - kg object attached to a spring is described by x = (0.25 m) cos ( 0.4 π t ). Find: a) The amplitude of the motion;[2pt] b) Frequency and Period of the motion;[4pt] c) Position of the object at t = .30 sec.[3pt] d) Speed of the object at t = .30 sec.[3pt] e) Acceleration of the object at t = .30 sec.[3pt]
1 A massless spring with spring constant ? hangs from the ceiling with a small object...
1 A massless spring with spring constant ? hangs from the ceiling with a small object of mass ? attached to its lower end. The object is initially held at the spring’s rest position. The object is then released oscillates up and down, with its lowest position being 10 ?? below the point from which it was released. a) What is the value of the ratio of the spring constant of the spring over the mass attached? That is, what...
A 50.0-g object connected to a spring with a force constant of 100.0 N/m oscillates on...
A 50.0-g object connected to a spring with a force constant of 100.0 N/m oscillates on a horizontal frictionless surface with an amplitude of 8.00 cm. a) What is the period (in seconds) and frequency of its motion? b) Assuming that the object's equilibrium position (i.e. when the spring is unstretched) is designated as x = 0, and that at t = 0 the object is located at maximum amplitude, x(t) = A cos (ωt), describes the motion. What is...
An object is in simple harmonic motion. Its maximum position is 0.5 cm from equilibrium. It...
An object is in simple harmonic motion. Its maximum position is 0.5 cm from equilibrium. It has an angular frequency of ?/2 rad/s. Initially, ?(0)=(√2)/4 ?? and ?(0)=((√2)/8)? ??/s. a) Use the values given above to write the function x(t) that describes the object’s position. b) Write down the function v(t) that describes the object’s velocity. c) Write down the function a(t) that describes the object’s acceleration. d) Draw a velocity versus time graph showing two cycles of the motion....
The position of an object in simple harmonic motion as a function of time is given...
The position of an object in simple harmonic motion as a function of time is given by ? = 3.8??? (5??/4 + ?/6) where t is in seconds and x in meters. In t = 2.0s calculate (a) the period, (b) the oscillation frequency (c) velocity and (d) acceleration.   
Answer each question and justify your answer in one or two sentences. Question 1 A block...
Answer each question and justify your answer in one or two sentences. Question 1 A block is attached to the end of a horizontal ideal spring and rests on a frictionless surface. The other end of the spring is attached to a wall. The block is pulled away from the spring’s unstrained position by a distance x0 and given an initial speed of v0 as it is released. Which one of the following statements concerning the amplitude of the subsequent...
A 0.400-kg object attached to a spring with a force constant of 8.00 N/m vibrates in...
A 0.400-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 12.2 cm. the maximum value of its speed is 54.6 WHAT IS THE MAXIMUM VALUE OF IT'S ACCELERATION? QUESTION 2 A 45.0-g object connected to a spring with a force constant of 40.0 N/m oscillates with an amplitude of 7.00 cm on a frictionless, horizontal surface. the total energy of the system is 98 the speed of...
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal...
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constant k = 570 N/m. The spring is stretched 9.30 cm from equilibrium and released. (a) What is the frequency of the motion? _____Hz (b) What is the period of the motion? ______s (c) What is the amplitude of the motion? ______cm (d) What is the maximum speed of the motion? ______m/s (e) What is the maximum acceleration of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT