Question

A bowler throws a bowling ball of radius R = 11 cm down the lane with...

A bowler throws a bowling ball of radius R = 11 cm down the lane with initial speed v0 = 6.5 m/s. The ball is thrown in such a way that it skids for a certain distance before it starts to roll. It is not rotating at all when it first hits the lane, its motion being pure translation. The coefficient of kinetic friction between the ball and the lane is 0.20. (a) For what length of time does the ball skid? (Hint: As the ball skids, its speed v decreases and its angular speed ω increases; skidding ceases when v = Rω.) s (b) How far down the lane does it skid? 4.702 Incorrect: Your answer is incorrect. m (c) How fast is it moving when it starts to roll? m/s

please show work and answer thank you!

Homework Answers

Answer #1

a)The forces on the ball will be:

X direction: F = M a(com)

Along Y : N - mg = 0 =. N = mg

Ff = mu N

Ff x R = I x alpha

mu mg R = 2/5 mR^2 alpha

alpha = - 5 mu g / 2R

a(com) = - mu g

V(com) = v - at = v - mu g t (1)

omega = -5 mu g/2R t (2)

Rolling without slipping startes when:

V(com) = -R omega

v - mu g t = (-5 mu g/2 ) t

t = 2v/7 mu g

t = 2 x 6.5 / 7 x 0.2 x 9.8 = 0.95 s

Hence, t = 0.95 s

b)From eqn of motion:

S = ut + 1/2 at^2

X = vt -1/2 x mu x g t^2

X = 6.5 x 0.95 - 0.5 x 0.2 x 9.8 x 0.95 x 0.95

X = 5.29 m

c)we have derived

v = 5mu g t/2

v = 5 x 0.2 x 9.8 x 0.95 / 2 = 4.66 m/s

Hence, v = 4.66 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bowler throws a bowling ball of radius R=10 CM down the lane with initials speed...
A bowler throws a bowling ball of radius R=10 CM down the lane with initials speed V0=10m/s, The ball is thrown in such a way that it skids and roll for a certain distance before it starts to roll without skidding. It is not rotating at all when it first hits the lane. Its motion is a pure translation. The coefficient of kinetic friction between the ball and the lane is 0.2. g is 10m/s2 a: For what length of...
A bowler throws a bowling ball of radius 11cm down a bowling lane. It has an...
A bowler throws a bowling ball of radius 11cm down a bowling lane. It has an initial linear velocity of 8.8 m/s, but no initial angular velocity. The kinetic friction force causes both linear acceleration and an angular acceleration; the kinetic friction coefficient between the ball and the floor is 0.1. When the balls linear speed has decreased enough and the ball’s angular speed has increased enough there will come a moment when the ball’s contact point with the floor...
3. A bowling ball of m=7.26kg and v=0.110m is thrown down a bowling alley lane on...
3. A bowling ball of m=7.26kg and v=0.110m is thrown down a bowling alley lane on a cruise ship with initial translational velocity of 3.50m/s. At the moment of the throw the lane is tilted up at an angle of 9.00°and accelerating downward at 2.60 m/s2. The kinetic friction coefficient of the lane is 0.0822 and the length of the lane is 15.1m. Assume the ship remains at the same tilt and acceleration the whole time the bowling ball is...
A spherical bowling ball with mass m = 3.6 kg and radius R = 0.1 m...
A spherical bowling ball with mass m = 3.6 kg and radius R = 0.1 m is thrown down the lane with an initial speed of v = 8.6 m/s. The coefficient of kinetic friction between the sliding ball and the ground is μ = 0.28. Once the ball begins to roll without slipping it moves with a constant velocity down the lane. A)What is the magnitude of the angular acceleration of the bowling ball as it slides down the...
A spherical bowling ball with mass m = 4.2 kg and radius R = 0.1 m...
A spherical bowling ball with mass m = 4.2 kg and radius R = 0.1 m is thrown down the lane with an initial speed of v = 8.1 m/s. The coefficient of kinetic friction between the sliding ball and the ground is μ = 0.28. Once the ball begins to roll without slipping it moves with a constant velocity down the lane. 3) How long does it take the bowling ball to begin rolling without slipping? 4) How far...
A spherical bowling ball with mass m = 3.6 kg and radius R = 0.118 m...
A spherical bowling ball with mass m = 3.6 kg and radius R = 0.118 m is thrown down the lane with an initial speed of v = 8.5 m/s. The coefficient of kinetic friction between the sliding ball and the ground is μ = 0.26. Once the ball begins to roll without slipping it moves with a constant velocity down the lane. 1.What is the magnitude of the angular acceleration of the bowling ball as it slides down the...
Jeffrey Lebowski rolls his bowling ball down the lane with the thumb hole perfectly lined up...
Jeffrey Lebowski rolls his bowling ball down the lane with the thumb hole perfectly lined up to rotate perpenducilar to the horizontal. (What a dude!) The ball is rolling without slipping at 7.00 m/s. The diameter of a bowling ball is 12.7 cm. Think of the circular motion of the thumb hole as vertical simple harmonic motion. What is the frequency of the the thumb hole being at the top of the ball? Hz What is the apparent vertical speed...
A bowling ball of mass 7.23 kg and radius 10.3 cm rolls without slipping down a lane at 2.90 m/s . Calculate...
A bowling ball of mass 7.23 kg and radius 10.3 cm rolls without slipping down a lane at 2.90 m/s . Calculate its total kinetic energy. Express your answer using three significant figures and include the appropriate units
A Brunswick bowling ball with mass M= 7kg and radius R=0.15m rolls from rest down a...
A Brunswick bowling ball with mass M= 7kg and radius R=0.15m rolls from rest down a ramp without slipping. The initial height of the incline is H= 2m. The moment of inertia of the ball is I=(2/5)MR2 What is the total kinetic energy of the bowling ball at the bottom of the incline? 684J 342J 235J 137J If the speed of the bowling ball at the bottom of the incline is V=5m/s, what is the rotational speed ω at the...
A person throws a ball at an initial angle θ0 = 45° from the horizontal with...
A person throws a ball at an initial angle θ0 = 45° from the horizontal with an initial speed of v0 = 20 m⋅s-1. The point of release of the ball is at a height d = 2 m above the ground. You may neglect air resistance. a) How long does it take the ball to reach the highest point of its trajectory? b) What was the maximum vertical displacement of the ball? c) What was the distance of the...