Question

Plot the transmission probability for an electron exhibiting a kinetic energy of 0.5*10-19J as a function...

Plot the transmission probability for an electron exhibiting a kinetic energy of 0.5*10-19J as a function of the barrier width for a finite potential barrier of 1.6*10-19J in the range between 2 and 8 Å. Use SI units for all calculations.

Homework Answers

Answer #1

Thanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron has a kinetic energy of 13.4 eV. The electron is incident upon a rectangular...
An electron has a kinetic energy of 13.4 eV. The electron is incident upon a rectangular barrier of height 19.6 eV and width 1.00 nm. If the electron absorbed all the energy of a photon of green light (with wavelength 546 nm) at the instant it reached the barrier, by what factor would the electron's probability of tunneling through the barrier increase?
An electron beam with energy 0.1 eV is incident on a potential barrier with energy 10...
An electron beam with energy 0.1 eV is incident on a potential barrier with energy 10 eV and width 20 ˚A. Choose the variant that you think best describes the probability of finding an electron on the other side of the barrier: a) 0; b) <10%; c) 100% d) 200%.
An electron having total energy E = 3.40 eV approaches a rectangular energy barrier with U...
An electron having total energy E = 3.40 eV approaches a rectangular energy barrier with U = 4.10 eV and L = 950 pm as shown in the figure below. Classically, the electron cannot pass through the barrier because E < U. Quantum-mechanically, however, the probability of tunneling is not zero. (a) Calculate this probability, which is the transmission coefficient. (Use 9.11  10-31 kg for the mass of an electron, 1.055  10-34 J · s for ℏ, and note that there are...
1. The shorter the wavelength of a photon, the more the photon behaves like a particle....
1. The shorter the wavelength of a photon, the more the photon behaves like a particle. Why? 2. In a H2 molecule there are two protons, and these have spin 1/2 ħ, that is, they are fermions. If we just look at the two protons, would you expect their spins to be parallel or anti parallel in the ground state of the H2 molecule? 3. Is there a type of viscosity that acts on holes in a semiconductor and gives...
Please use python! Work out a formula for the total energy (kinetic plus gravitational) of the...
Please use python! Work out a formula for the total energy (kinetic plus gravitational) of the pendulum in term of 8 and w and constants. Take the gravitational potential energy to be zero at the lowest point of the pendulum swing. Write your equation below using Markdown and Latex Write a function to calculate the energy using the trajectories produced by any of the previous functions. Plot the total energy for at least 10 perios for trajectories produced by Euler,...
In this problem, you will model the mixing energy of a mixture in a relatively simple...
In this problem, you will model the mixing energy of a mixture in a relatively simple way, in order to relate the existence of a solubility gap to molecular behavior. Consider a mixture of A and B molecules that is ideal in every way but one: the potential energy due to the interaction of neighboring molecules depends upon whether the molecules are alike or different. Let n be the average number of nearest neighbors of any given molecule (perhaps 6...
Learning Outcomes (Unit 2) Perform quantitative calculations based on the relationship between wavelength, energy, and the...
Learning Outcomes (Unit 2) Perform quantitative calculations based on the relationship between wavelength, energy, and the speed of light. Identify and rank the different types of radiation which comprise the electromagnetic spectrum. Explain why classical mechanics doesn't describe electromagnetic radiation. Describe the photoelectric effect and relate the energy and/or intensity of the photons to the work function and kinetic energy of the ejected electrons. Explain the origin of atomic and emission spectra and relate these spectra to discrete energy levels....
Question 1 (1 point) Which is not necessary in order to do work on an object...
Question 1 (1 point) Which is not necessary in order to do work on an object (use the scientific definition of work)? Question 1 options: There must be a change in momentum. A net force must be applied to the object. The object must undergo a displacement. A component of the force must be in the direction of motion. Question 2 (1 point) The change in gravitational potential energy for a 1.9 kg box lifted 2.2 m is: Question 2...
1)To lower the energy barrier in a reaction, enzymes change the path of the reaction between...
1)To lower the energy barrier in a reaction, enzymes change the path of the reaction between the reactants and products by doing what? A. Destabilizing the transition state by increasing the free energy to be used and lowering the activation energy B. Releasing carbonic acid into the environment to stabilize the transition state and lowering the activation energy C. Reduce the activation energy by stabilizing the transition state and decreasing its free energy D.Supply heat to stabilize the reactants and...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...