Question

A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of...

A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.30 N is applied. A 0.520-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (Assume that the direction of the initial displacement is positive. Use the exact values you enter to make later calculations.)


(f) Determine the displacement x of the particle from the equilibrium position at t = 0.500 s.
  

cm

(g) Determine the velocity and acceleration of the particle when t = 0.500 s. (Indicate the direction with the sign of your answer.)

v = m/s
a =   m/s2

Homework Answers

Answer #1

7.3 N force stretches 3 cm

so,

force = kx

7.3 = k * 0.03

k = 243.33 N/m

angular frequency = sqrt(k / m)

angular frequency = sqrt(243.33 / 0.52)

angular frequency = 21.63 rad/sec

equation of particle displacement

y(t) = A * cos(wt)

A = 5 cm

at time t = 0.5 sec

y(0.5) = 0.05 * cos(21.63 * 0.5)

f) y(0.5) = -0.00897 m or -0.897 cm

velocity(t) = -Aw * sin(wt)

velocity(0.5) = -0.05 * 21.63 * sin(21.63 * 0.5)

g) velocity(0.5) = 1.0639 m/s

acceleration(t) = Aw^2 * cos(wt)

acceleration(0.5) = 0.05 * 21.63^2 * cos(21.63 * 0.5)

g) acceleration(0.5) = -4.201 m/s^2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.200 kg mass attached to a horizontal spring is displaced 15.4 cm from rest and...
A 0.200 kg mass attached to a horizontal spring is displaced 15.4 cm from rest and then released. If the mass oscillates 8.00 times in 19.3 s, what is the spring constant in the spring? 0.0344 N/m 1.36 N/m 6.78 N/m 0.0212 N/m What is the time constant of an oscillator if its amplitude of oscillation is decreased to 32.3% of its original value in 8.50 s? 7.52 s 15.0 s 3.76 s 1.22 s A ball is attached to...
A mass of 100 g stretches a spring 5 cm. If the mass is set in...
A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 10 cm/s, and if there is no damping, determine the position u of the mass at any time t. (Use g = 9.8 m/s2  for the acceleration due to gravity. Let u(t), measured positive downward, denote the displacement in meters of the mass from its equilibrium position at time t seconds.) u(t) = When does...
DIFFERENTIAL EQUATIONS: An object stretches a spring 5 cm in equilibrium. It is initially displaced 10...
DIFFERENTIAL EQUATIONS: An object stretches a spring 5 cm in equilibrium. It is initially displaced 10 cm above equilibrium and given an upward velocity of .25 m/s. Find and graph its displacement for t > 0. Find the frequency, period, amplitude, and phase angle of the motion.
A 5 kg object is attached to a spring and stretches it 10cm on its own....
A 5 kg object is attached to a spring and stretches it 10cm on its own. There is no damping in the system, but an external force is present, described by the function F(t) = 8 cos ωt. The object is initially displaced 25 cm downward from equilibrium with no initial velocity and the system experiences resonance. Find the displacement of the object at any time t.
1.A 1.10 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring...
1.A 1.10 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with k = 490 N/m. Let x be the displacement of the block from the position at which the spring is unstretched. At t = 0 the block passes through x = 0 with a speed of 3.40 m/s in the positive x direction. What are the (a) frequency and (b) amplitude of the block's motion 2.A vertical spring stretches 13 cm when a...
A mass of 0.500 kg stretches a spring 20.0 cm. Find the force constant of the...
A mass of 0.500 kg stretches a spring 20.0 cm. Find the force constant of the spring. If the mass is pulled down an additional distance of 5.00 cm and then released, find the initial restoring force, the period, and the total energy of the resulting simple harmonic motion. 2- Elevator problem with scale (no mass of elevator given). Find what the scale reads if (a) it goes up at 2m/s, (b) up at 8m/s^2 (c) down at 5m/s^2. PLEASE...
A mass of 60.0 g, attached to a weightless spring with a force constant of 40.0...
A mass of 60.0 g, attached to a weightless spring with a force constant of 40.0 N / m, vibrates at an amplitude of 5.00 cm on a horizontal, frictionless plane. (a) The total energy of the vibrating system, (b) the velocity of the mass when the displacement is 2.00 cm. Find. When the displacement is 2.50 cm, (c) kinetic energy and (d) potential energy Find.
A student stretches a spring, attaches a 1.70 kg mass to it, and releases the mass...
A student stretches a spring, attaches a 1.70 kg mass to it, and releases the mass from rest on a frictionless surface. The resulting oscillation has a period of 0.530 s and an amplitude of 26.0 cm. Determine the oscillation frequency, the spring constant, and the speed of the mass when it is halfway to the equilibrium position. (a) the oscillation frequency (in Hz) Hz (b) the spring constant (in N/m) N/m (c) the speed of the mass (in m/s)...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s?...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s? 2. The block is displaced 0.5m from equilibrium and released (see the figure below). The block executes simple harmonic motion with a period of 4.0 s .Assuming that the block is moving on a frictionless surface, and the spring is of negligible mass. a. Calculate the mass of the block? b. Determine the velocity of the block 1.0 seconds after it is released? The...
6) A mass of 3 kg is attached to a massless spring with a force constant...
6) A mass of 3 kg is attached to a massless spring with a force constant 500 N/m. The mass rests on a horizontal frictionless surface. The system is compressed a distance of 30 cm from the springs initial position and then released. The momentum of the mass when the spring passes its equilibrium position is? 8660.25m/s Is this right
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT