Question

An electron in the beam of a cathod-ray tube is accelerated by a potential difference of...

An electron in the beam of a cathod-ray tube is accelerated by a potential difference of 2.10 kV . Then it passes through a region of transverse magnetic field, where it moves in a circular arc with a radius of 0.170 m .

What is the magnitude of the field?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Electrons in old-fashioned cathode ray tubes—as in CRT monitors—are accelerated, starting from rest, by a potential...
Electrons in old-fashioned cathode ray tubes—as in CRT monitors—are accelerated, starting from rest, by a potential difference of 20.0 kV. a. What is their speed after being accelerated by this potential? b. If the Earth’s magnetic field is at a right angle to the electron beam and its magnitude is 0.600 gauss, what is the corresponding magnetic force on an electron? c. Estimate (pretending that the magnetic force is approximately constant as the electron moves through the tube) the displacement...
An electron beam moves toward a cathode ray tube screen, which is 30 cm away from...
An electron beam moves toward a cathode ray tube screen, which is 30 cm away from the negative electrode. The electrons are accelerated by a potential difference of 10 kV. Estimate the maximum displacement of the electron beam caused by Earth's magnetic field. The average magnetic field at the surface of Earth is roughly BE = 45×10−6 T
A beam of protons is accelerated through a potential difference of 0.750kV and then enters a...
A beam of protons is accelerated through a potential difference of 0.750kV and then enters a uniform magnetic field traveling perpendicular to the field. a.What magnitude of field is needed to bend these protons in a circular arc of diameter 1.74m ? b.What magnetic field would be needed to produce a path with the same diameter if the particles were electrons having the same speed as the protons?
Consider a cathode ray tube. In this tube, a potential difference of ΔV = 111 V...
Consider a cathode ray tube. In this tube, a potential difference of ΔV = 111 V accelerates electrons horizontally in an electron gun. Positively charged anodes focus the electrons into a beam. Horizontal and vertical deflecting plates use potential differences to steer the beam. In the main part of the cathode ray tube, there is a magnetic field with magnitude B = 3.40·10^-4 T. The direction of the magnetic field is upward and perpendicular to the initial velocity of the...
Electrons are accelerated through a potential difference of 3.59 kV in a cathode ray tube. Calculate...
Electrons are accelerated through a potential difference of 3.59 kV in a cathode ray tube. Calculate the de Broglie wavelength of the electrons.
In the electron gun of an old TV picture tube, the electrons are accelerated by a...
In the electron gun of an old TV picture tube, the electrons are accelerated by a voltage V . After leaving the electron gun, the electron beam travels a distance D to the screen; and in this region there is transverse magnetic field B and no electric field. Show that the approximate deflection d of the beam due to this magnetic field is given by d = D2 2 r e 2mV B
An electron is accelerated in the positive x direction through a potential difference of 160 V....
An electron is accelerated in the positive x direction through a potential difference of 160 V. It then enters a region with a uniform magnetic field of 0.80 T in the positive z direction. (a) What is the speed of the electron? (b) What is the magnitude and direction of the magnetic force on the electron?
An electron cathode ray tube is accelerated when it passes between two parallel plates separated by...
An electron cathode ray tube is accelerated when it passes between two parallel plates separated by 5.0 cm. If the electron is initially moving with speed vi = 1000 m/s to the right and it has a speed of vf = 5500 m/s after leaving the acceleration region, what is the potential difference deltaV between the plates and which plate, the right or the left, is at the highest potential? Justify your answer.
A beam of protons is accelerated easterly from rest through a potential difference of 5.0kV ....
A beam of protons is accelerated easterly from rest through a potential difference of 5.0kV . It enters a region where there exists an upward pointing uniform electric field. This field is created by two parallel plates separated by 15cm with a potential difference of 250 V across them. PART A What is the speed of the protons as they enter the electric field? Express your answer using two significant figures. PART B Find the magnitude of the magnetic field...
) A beam of electrons is accelerated through a potential difference of dV before entering a...
) A beam of electrons is accelerated through a potential difference of dV before entering a region having uniform electric and magnetic fields that are perpendicular to each other and perpendicular to the direction in which the electron is moving. a) What is the speed with which the electrons enter the region?