Question

A 850 kg car initially going 18.0 m/s only in the x-direction runs into a stationary...

A 850 kg car initially going 18.0 m/s only in the x-direction runs into a stationary 1400 kg truck. After the collision the car is going 11.0 m/s at an angle of 38 degrees above the x-axis. What is the magnitude and direction of the velocity of the truck right after the collision (give speed and angle)?

Homework Answers

Answer #1

According to the conservation of momentum

Mass of the car, m1 = 850 kg

Mass of the truck m2 = 1400 kg

The velocity of the car before collision, u1 = 18 i m/s m/s

The velocity of the truck before the collision, u2 = 0

The velocity of the car after the collision, v1 = 11*(Cos38 i + Sin 38j) m/s

From Conservation of momentum equation

850 * 18 i + 1400 * 0 = 850 * 11*(Cos38 i + Sin 38j) m/s + 1400 * v2

15300 i = 7367.8 i + 5755.86 j + 1400 * v2

1400 * v2 = 7932.2 i - 5755.86 j

v2 = (5.66 i - 4.11 j ) m/s

The magnitude of v2 is

v2 = sqrt(5.66^2 + 4.11^2)

v2 = 7 m/s --> Answer

Angle, θ = tan^-1 (-4.11 / 5.66)

= 35.98 deg

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes...
A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 8,800-kg truck moving in the same direction at 20.0 m/s (see figure below). The velocity of the car right after the collision is 18.0 m/s to the east.   (a) What is the velocity of the truck right after the collision? (b) How much mechanical energy is lost in the collision? c) Account for this loss in energy.
A 1,270-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes...
A 1,270-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 8,600-kg truck moving in the same direction at 20.0 m/s (see figure below). The velocity of the car right after the collision is 18.0 m/s to the east. (a) What is the velocity of the truck right after the collision? m/s (east) (b) How much mechanical energy is lost in the collision?   J Account for this loss in...
A 1,240-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes...
A 1,240-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 8,700-kg truck moving in the same direction at 20.0 m/s (see figure below). The velocity of the car right after the collision is 18.0 m/s to the east. Two images depicting a before and after scenario of a car colliding with the back of a truck. Before: The car is moving at a velocity of +25.0 m/s. This...
A 5.0 kg toy-car moving with a speed of 10.0 m/s in +x direction collides with...
A 5.0 kg toy-car moving with a speed of 10.0 m/s in +x direction collides with a 7.0 kg toy truck moving with a velocity of 15.0 m/s in a direction 37 degrees above +x direction. What is the velocity, both the magnitude and direction, of the two objects after the collision, if they remain stuck together?
A 1,200-kg car traveling initially with a speed of 25.0 m/s crashes into the rear of...
A 1,200-kg car traveling initially with a speed of 25.0 m/s crashes into the rear of a 9,000-kg truck moving in the same direction at 20.0 m/s. The velocity of the car after the collision is 17.5 m/s. a) What is the velocity of the truck right after the collision? b) How much mechanical energy is lost in the collision?
A 1 150.0 kg car traveling initially with a speed of 25.000 m/s in an easterly...
A 1 150.0 kg car traveling initially with a speed of 25.000 m/s in an easterly direction crashes into the back of a 8 000.0 kg truck moving in the same direction at 20.000 m/s. The velocity of the car right after the collision is 18.000 m/s to the east. (a) What is the velocity of the truck right after the collision? (Give your answer to five significant figures.) m/s east (b) What is the change in mechanical energy of...
A proton with an initial speed of 1.82 ✕ 108 m/s in the +x direction collides...
A proton with an initial speed of 1.82 ✕ 108 m/s in the +x direction collides elastically with another proton initially at rest. The first proton's velocity after the collision is 1.454 ✕ 108 m/s at an angle of 37.0° with the +x-axis. What is the velocity (magnitude and direction) of the second proton after the collision? magnitude m/s direction ? ° counterclockwise from the +x-axis
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides inelastically with an initially stationary block of mass m2=18.0 kg. The two objects become stuck together. Find the final velocity of the two blocks. B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg. After the collision, block m2 is moving to the right...
A ball of 2 kg travels in the x direction with a velocity of 4 m/s....
A ball of 2 kg travels in the x direction with a velocity of 4 m/s. It collides with a ball of mass 3 kg which is initially at rest. After the collision, the first ball travels at a velocity of 2.5 m/s at an angle of 30 degrees from the x axis. What is the velocity of the second ball? NOTE: what if they stuck together? What kind of collision would that be?
A 1000-kg car moving north with a speed of 25.0 m/s collides with a 2000- kg...
A 1000-kg car moving north with a speed of 25.0 m/s collides with a 2000- kg truck moving at an angle of 30° north of west with a speed of 20.0 mjs. After the collision, the car and the truck stuck together. What is the magnitude of their common velocity after the collision?