Question

The figure shows a simple model of a seesaw. These consist of a plank/rod of mass...

The figure shows a simple model of a seesaw. These consist of a plank/rod of mass mr and length 2x allowed to pivot freely about its center (or central axis), as shown in the diagram. A small sphere of mass m1 is attached to the left end of the rod, and a small sphere of mass m2 is attached to the right end. The spheres are small enough that they can be considered point particles. The gravitational force acts downward. The magnitude of the acceleration due to gravity is equal to g.Suppose that the rod is held at rest horizontally and then released. (Throughout the remainder of this problem, your answer may include the symbol I, the moment of inertia of the assembly, whether or not you have answered the first part correctly.) What is the angular acceleration α of the rod immediately after it is released? Take the counterclockwise direction to be positive. Express α in terms of some or all of the variables mr, m1, m2, x, I, and g.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The figure shows a thin rod, of length L = 2.10 m and negligible mass, that...
The figure shows a thin rod, of length L = 2.10 m and negligible mass, that can pivot about one end to rotate in a vertical circle. A heavy ball of mass m = 7.10 kg is attached to the other end. The rod is pulled aside to angle θ0 = 5.3° and released with initial velocity v→0 = 0. (a) What is the speed of the ball at the lowest point? (b) Does the speed increase, decrease, or remain...
A uniform rod of mass mr = 173 g and length L = 1... A uniform...
A uniform rod of mass mr = 173 g and length L = 1... A uniform rod of mass mr = 173 g and length L = 100.0 cm is attached to the wall with a pin as shown. Cords are attached to the rod at the r1 = 10.0 cm and r2 = 90.0 cm mark, passed over pulleys, and masses of m1 = 246 g and m2 = 127 g are attached. Your TA asks you to determine...
A stick of mass M and length L is pivoted at one end. A small mass...
A stick of mass M and length L is pivoted at one end. A small mass m<M is attached to the right-hand end of the stick. The stick is held horizontally and released from rest. Given that the rotational inertia of a uniform rod pivoted around one end is 1/3ML^2, determine the rotational inertia of the described system. Calculate the angular velocity of the system when it reaches a vertical position. You cannot use rotational kinematics here because angular acceleration...
thin rod of mass Mandlength Has a fixed rotation axis a distance L/6 from one end.(a)...
thin rod of mass Mandlength Has a fixed rotation axis a distance L/6 from one end.(a) Using the parallel-axis theorem, find the moment of inertia of the roundabouts rotation axis. (b) Suppose the rod is held horizontally at rest and then released. Draw a free-body diagram of the rod at the moment of its release, and find its angular acceleration atthis moment. (Remember that gravity acts at the rod’scenter.)(c) Find the angular velocity of the rod as it swings through...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...