Question

Consider a free, unbound particle with V(x) = 0 and the initial state wave function: phi(x,0)...

Consider a free, unbound particle with V(x) = 0 and the initial state wave function: phi(x,0) = Ae^(-a|x|)
1. Construct phi(x,t)
2. Discuss the limiting cases, i.e. what happens to position and momentum when a is bery small and when a is very large?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a are real and positive constants. (a) Normalize it. (b) Find Ψ(x, t). (c) Find |Ψ(x, t)| 2 . Express your result in terms of the quantity w ≡ p a/ [1 + (2~at/m) 2 ]. At t = 0 plot |Ψ| 2 . Now plot |Ψ| 2 for some very large t. Qualitatively, what happens to |Ψ| 2 , as time goes on? (d)...
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an...
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an impenetrable box. (a) Show that the real and imaginary parts of Ψ(x,t) , separately, can be written as the sum of two travelling waves. (b) Show that the decompositions in part (a) are consistent with your understanding of the classical behavior of a particle in an impenetrable box.
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
Recall that |ψ|2dx is the probability of finding the particle that has normalized wave function ψ(x)...
Recall that |ψ|2dx is the probability of finding the particle that has normalized wave function ψ(x) in the interval x to x+dx. Consider a particle in a box with rigid walls at x=0 and x=L. Let the particle be in the first excited level and use ψn(x)=2L−−√sinnπxL For which values of x, if any, in the range from 0 to L is the probability of finding the particle zero? For which v alues of x is the probability highest?Express your...
The wave function for a particle confined to a one-dimensional box located between x = 0...
The wave function for a particle confined to a one-dimensional box located between x = 0 and x = L is given by Psi(x) = A sin (n(pi)x/L) + B cos (n(pi)x/L) . The constants A and B are determined to be
It is possible to construct oscillatory wave packets without using trigonometric functions. Consider the function y(x)...
It is possible to construct oscillatory wave packets without using trigonometric functions. Consider the function y(x) = (64x^6 - 240x^4 + 180x^2 - 15)*e^(-x^2). Wave packets using polynomials occur in quantum mechanics as solutions to the simple harmonic oscillator and the hydrogen atom, as we discuss later in this test. (a) Sketch this function in the region where it has reasonably large amplitude. (b) What is the width of this wave packet? Make a rough estimate from your sketch. (c)...
Consider a particle of mass m and energy E approaching the step potential? V (x)= 0,...
Consider a particle of mass m and energy E approaching the step potential? V (x)= 0, x<0    V(x)=V0, x>0 from negative values of x. Consider the case E > V0. a) Classically, what is the probability of re?ection? b) Quantum mechanically, what is the probability of re?ection? Express your result in terms of the ratio V0/E. What is the probability of re?ection if E = 2V0?
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the interval 0 ≤ x ≤ 1. (1) What is the normalization constant, C? (2) Express ψ(x,0) as a linear combination of the eigenstates of the infinite square well on the interval, 0 < x < 1. (You will only need two terms.) (3) The energies of the eigenstates are En = h̄2π2n2/(2m) for a = 1. What is ψ(x, t)? (4) Compute the expectation...
a. Suppose that at time ta the state function of a one particle system is Ψ...
a. Suppose that at time ta the state function of a one particle system is Ψ = (2/πc2)3/4 e(exp [– (x2 + y2 + z2)/c2)] where c = 2 nm. Find the probability that a measurement of the particle’s position at ta will find the particle in the tiny cubic region with its center at x = 1.2 nm, y = -1.0 nm, z = 0 and with edges each of length 0.004 nm. Note that 1 nm = 10-9...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT