Question

You do a physics lab experiment on another planet. A small block is released from rest...

You do a physics lab experiment on another planet. A small block is released from rest at the top of a long frictionless ramp that is inclined at an angle of 36.9° above the horizontal. You measure that a small block travels a distance 15.0 m down the incline in 7.90 s. What is the value of g, the acceleration due to gravity on this planet?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.00 kg block is released from rest on a ramp that is inclined at an...
A 4.00 kg block is released from rest on a ramp that is inclined at an angle of 60.0∘ below the horizontal. The initial position of the block is a vertical distance of 2.00 m above the bottom of the ramp. Part A) If the speed of the block is 5.00 m/s when it reaches the bottom of the ramp, what was the work done on it by the friction force?: ANS: -28.4J Part B) If the angle of the...
A 4.00 kg block is released from rest on a ramp that is inclined at an...
A 4.00 kg block is released from rest on a ramp that is inclined at an angle of 60.0∘ below the horizontal. The initial position of the block is a vertical distance of 2.00 m above the bottom of the ramp. 1) If the speed of the block is 5.00 m/s when it reaches the bottom of the ramp, what was the work done on it by the friction force? 3) How much work is done by friction when the...
As shown in Figure 1, a block (mass: 2.4 kg) is initially at rest near the...
As shown in Figure 1, a block (mass: 2.4 kg) is initially at rest near the top of an inclined plane, oriented at a 25° angle above the horizontal. The coefficients of static and kinetic friction along the incline are 0.2 and 0.1, respectively. (a) Just after the block is released from rest, draw a free-body diagram for it. (Assume that the block is moving after being released from rest.) (b) Determine the magnitude of the normal force acting on...
A 8.00-kg block of ice, released from rest at the top of a 1.08-mm-long frictionless ramp,...
A 8.00-kg block of ice, released from rest at the top of a 1.08-mm-long frictionless ramp, slides downhill, reaching a speed of 2.70 m/s at the bottom. A: What is the angle between the ramp and the horizontal? B: What would be the speed of the ice at the bottom if the motion were opposed by a constant friction force of 10.1 N parallel to the surface of the ramp?
As part of an experiment in physics lab, small metal ball of radius r = 2.1...
As part of an experiment in physics lab, small metal ball of radius r = 2.1 cm rolls without slipping down a ramp and around a loop-the-loop of radius R = 3.7 m. The ball is solid with a uniform density and a mass M = 336 g. 1) How high above the top of the loop must it be released in order that the ball just makes it around the loop? m 2) Now instead of a sphere, what...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline angled at θ = 30 degrees. The block slides down and incline of length ? = 1.40 m along the incline, which has a coefficient of kinetic friction between the incline and the block of ?? = 0.180. The block then slides on a horizontal frictionless surface until it encounters a spring with a spring constant of ? = 205 N/m. Refer to the...
A block of ice, released from rest at the top of a 1.50-m-long ramp, slides downhill,...
A block of ice, released from rest at the top of a 1.50-m-long ramp, slides downhill, reaching a speed of 2.50 m/s at the bottom. If the coefficient of kinetic friction μ=0.3 what is the angle between the ramp and the horizontal? please include free-body diagram.
Starting from rest, a uniform solid cylinder rolls without slipping down a ramp inclined at angle...
Starting from rest, a uniform solid cylinder rolls without slipping down a ramp inclined at angle theta to the horizontal. Find an expression for its speed after it has gone a distance d along the incline. Your expression should be in terms of the given variables and any other known constants such as acceleration due to gravity, g.
A block of mass m = 3.3 kg is on an inclined plane with a coefficient...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient of friction μ1 = 0.39, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 44°. The block is then compressed against a spring a distance Δx = 0.13 m from its equilibrium point (the spring has a spring constant of k1 = 35 N/m) and released. At the bottom of the inclined plane...
A 500-g block is released from rest and slides down a frictionless track that begins 2.26...
A 500-g block is released from rest and slides down a frictionless track that begins 2.26 m above the horizontal, as shown in the figure below. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant of 29.5 N/m. Find the maximum distance the spring is compressed. m A 500-g block rests at the top of a track on a horizontal platform. From this platform, the...