Question

A uniform disk A of mass mA= 8.2 kg turns at ωA=+50 rad/s about a fixed...

A uniform disk A of mass mA= 8.2 kg turns at ωA=+50 rad/s about a fixed central axis. Another rotating disk B of mass mB= 10.5 kg, with the same radius R of disk A, is dropped onto the freely spinning disk A (see figure). They become coupled and turn together with their centers superposed, as shown in the figure, with an angular velocity ω'=+33 rad/s. (The moment of inertia of the disk is  Id = [ 1/2]mR2, where m is the mass, and R is the radius) . The angular velocity of disk B before the impact is:

Homework Answers

Answer #1

here,

mass of disk A , mA = 8.2 kg

mass of disk B , mB = 10.5 kg

initial angular speed of A , wA = 50 rad/s

radius of disks is R

the final angular speed , w' = 33 rad/s

let the angular velocity of the disk B before the impact be wB

using conservation of angular momentum

(0.5 * mA * R^2) * wA + (0.5 * mB * R^2) * wB = (0.5 * ( mA + mB) * R^2) * w'

(8.2 ) * 50 + (10.5 ) * wB = (( 8.2 + 10.5) ) * 33

solving for wB

wB = 19.7 rad/s

the angular velocity of the disk B before the impact is 19.7 rad/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform disk turns at 4.1 rev/s around a frictionless spindle. A nonrotating rod, of the...
A uniform disk turns at 4.1 rev/s around a frictionless spindle. A nonrotating rod, of the same mass as the disk and length equal to the disk's diameter, is dropped onto the freely spinning disk, see the figure. They then turn together around the spindle with their centers superposed. What is the angular velocity of the combination? State fundamental principle used, objects in the system, and write out equation first
A uniform disk of mass M and radius R is initially rotating freely about its central...
A uniform disk of mass M and radius R is initially rotating freely about its central axis with an angular speed of ω, and a piece of clay of mass m is thrown toward the rim of the disk with a velocity v, tangent to the rim of the disk as shown. The clay sticks to the rim of the disk, and the disk stops rotating. 33. What is the magnitude of the total angular momentum of the clay-disk system...
A uniform disk turns at 3.1 rev/s around a frictionless spindle. A nonrotating rod, of the...
A uniform disk turns at 3.1 rev/s around a frictionless spindle. A nonrotating rod, of the same mass as the disk and length equal to the disk's diameter, is dropped onto the freely spinning disk. They then turn together around the spindle with their centers superposed. (Figure 1) Part A What is the angular frequency in rev/s of the combination?
A uniform disk turns at 3.2 rev/s around a frictionless central axis. A nonrotating rod, of...
A uniform disk turns at 3.2 rev/s around a frictionless central axis. A nonrotating rod, of the same mass as the disk and length equal to the disk's diameter, is dropped onto the freely spinning disk(Figure 1). They then turn around the spindle with their centers superposed. What is the angular frequency in rev/s of the combination?
A uniform disk of mass Mdisk = 4 kg and radius R = 0.24 mhas a...
A uniform disk of mass Mdisk = 4 kg and radius R = 0.24 mhas a small block of mass mblock = 2.2 kg on its rim. It rotates about an axis a distance d = 0.16 m from its center intersecting the disk along the radius on which the block is situated. What is the moment of inertia of the block about the rotation axis? What is the moment of inertia of the disk about the rotation axis? When...
A person with mass mp = 77 kg stands on a spinning platform disk with a...
A person with mass mp = 77 kg stands on a spinning platform disk with a radius of R = 2.22 m and mass md = 195 kg. The disk is initially spinning at ω = 1.9 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.74 m from the center). 1) What is the total moment of inertia of the system about the center of the disk when the person stands on...
A disk (mass of 3 kg, radius 30 cm) is rotating with an angular velocity w1=...
A disk (mass of 3 kg, radius 30 cm) is rotating with an angular velocity w1= 5 rad/s. A second disk (mass 2kg, radius 15cm), which is rotating at w= -7 rad/s is dropped on top of the first disk. The disks are dropped so that they share a rotational axis, and they stick together. The moment of inertia of a disk is 1/2mr^2. What is the final angular speed of the two disks?
A person with mass mp = 70 kg stands on a spinning platform disk with a...
A person with mass mp = 70 kg stands on a spinning platform disk with a radius of R = 2.04 m and mass md = 186 kg. The disk is initially spinning at ω = 2 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.68 m from the center). What is the total moment of inertia of the system about the center of the disk when the person stands on the...
A person with mass mp = 79 kg stands on a spinning platform disk with a...
A person with mass mp = 79 kg stands on a spinning platform disk with a radius of R = 1.83 m and mass md = 183 kg. The disk is initially spinning at ω = 1.8 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.61 m from the center). 1) What is the total moment of inertia of the system about the center of the disk when the person stands on...
A person with mass mp = 75 kg stands on a spinning platform disk with a...
A person with mass mp = 75 kg stands on a spinning platform disk with a radius of R = 1.65 m and mass md = 187 kg. The disk is initially spinning at ω = 1.4 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.55 m from the center). 1) What is the total moment of inertia of the system about the center of the disk when the person stands on...