Question

A box of mass 10 kg is released from rest at point A, the top of...

A box of mass 10 kg is released from rest at point A, the top of a long frictionless slide.Point A is 20 meters above the level of points B and C is not. THe coefficient of kinetic friction between the box and this surface is uk and horizontal distance between Point B and C is 25 meters

A)Find The speed of the box when its height above point B is 10 meters

B) With respect to part A, find the peed of the box when it reaches point B

C) with respect to part A ,Determine the value of Uk ,so that the box comes to rest at point C

Homework Answers

Answer #1

If you liked the answer then give a thumb up.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough...
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough horizontal surface until it comes to rest. The coefficient of kinetic friction between the horizontal surface and the crate is 0.27. If the crate’s initial height is 9 m, find the distance it travels on the horizontal surface.
A box with mass m = 1.2kg on an inclined frictionless surface is released from rest...
A box with mass m = 1.2kg on an inclined frictionless surface is released from rest from a height h = 1.35 m . After reaching the bottom of the incline the box slides with friction (μk=0.2) along a horizontal surface until coming to a rest after a distance d. 1. Draw a free body diagram for the box while it is on the incline. Clearly label all forces with standard names. 2. Draw a free body diagram for the...
A 40.0N box begins to slide from rest through a plane inclined at 25 degrees (with...
A 40.0N box begins to slide from rest through a plane inclined at 25 degrees (with respect to the horizontal) and which has a length of 7.00m. The coefficient of kinetic friction between the box and the plane is 0.138. Determine: a) the kinetic energy of the box when it reaches the end of the inclined plane b) the kinetic friction force
A block of mass m is initially held at rest at point P on an incline...
A block of mass m is initially held at rest at point P on an incline that makes an angle q with respect to horizontal. The coefficient of kinetic friction between the block and the incline is mk. After the block slides down the incline from point P, it starts to slide without friction up a vertical circular track of radius R. When it reaches the top of the circle, the normal force (downward) by the track to the block...
A 9.0-kg box of oranges slides from rest down a frictionless incline from a height of...
A 9.0-kg box of oranges slides from rest down a frictionless incline from a height of 5.0 m. A constant frictional force, introduced at point A, brings the block to rest at point B. If the coefficient of kinetic friction is 0.26, what is the distance between A and B?
An object with a mass m = 3.5 kg is released from rest at the top...
An object with a mass m = 3.5 kg is released from rest at the top of the ramp. The length of the ramp is 4 m. The object slides down the ramp reaching a speed of 1.8 m/s at the bottom. (a) How much time (in sec) does it take the object to reach the bottom of the ramp? (use kinematics equations) (b) What is the acceleration of the object (in m/s2 )? (use kinematics equations) (c) If the...
A block with a mass of 12.0 kg is initially at rest at the top of...
A block with a mass of 12.0 kg is initially at rest at the top of a plane that is inclined at an angle of 30.0° above the horizontal. The block slides down the plane and is traveling with a speed of 1.50 m/s when it reaches the bottom. If the plane is 0.750 m long, what is the coefficient of kinetic friction between the block and the plane? please explain each step.
A roller coaster car of mass 800 kg when released from rest at point A (height...
A roller coaster car of mass 800 kg when released from rest at point A (height h above the ground) slides along the track and inside the loop of radius 16.0 m. The car never loses contact with the track. Draw below a free body diagram for the car at the top of the loop. If the speed of the car at the top of the loop (point C) is 17 m/s, what is the normal force at that point?...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient of friction μ1 = 0.39, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 44°. The block is then compressed against a spring a distance Δx = 0.13 m from its equilibrium point (the spring has a spring constant of k1 = 35 N/m) and released. At the bottom of the inclined plane...
A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across...
A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across a 2.0 m wide horizontal surface, then hits a horizontal spring with spring constant 500 N/m. The ground under the spring is frictionless, but the 2.0 m wide horizontal surface is rough with a coefficient of kinetic friction of 0.25. a. What is the speed of the box just before reaching the rough surface? b. What is the speed of the box just before...