Question

A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...

A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley (the figure (Figure 1)). The pulley has the shape of a uniform solid disk of mass 2.20 kg and diameter 0.520 m .After the system is released, find the horizontal tension in the wire.After the system is released, find the vertical tension in the wire.After the system is released, find the acceleration of the box.After the system is released, find magnitude of the horizontal and vertical components of the force that the axle exerts on the pulley.

Homework Answers

Answer #1

Let's call the horizontal tension Th and the vertical tension Tv.

fbd for the 12 kg mass gives us

Fnet = ma = 12kg * a = Th

Dropping units, we have Th = 12a

fbd for 5 kg mass gives us

Fnet = ma = 5kg * a = mg - Tv = 5kg * 9.8m/s² - Tv

Tv = 49 - 5a

fbd for pulley gives us

net torque tau = (Tv - Th)*r = I*alpha = ½mr²(a/r) = ½mra ? r cancels

Tv - Th = ½ma = ½ * 2.2kg * a = 1.1kg * a

Plug in for Tv and Th:

49 - 5a - 12a = 1.1a

49 = 18.1a

a = 2.707 m/s² part C

A) Th = 12kg * 2.707m/s² = 32.49 N

B) Tv = 49N - 5kg*2.707m/s² = 35.46 N

D) The horizontal and vertical components are simply Th and Tv.

Horizontal = Th = 32.49N

Vertical = Tv = 35.46N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley (the figure (Figure 1) ). The pulley has the shape of a uniform solid disk of mass 2.00 kg and diameter 0.520 m . Part A After the system is released, find the horizontal tension in the wire. Part B After the system is released, find the vertical tension in the wire....
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley. The pulley has the shape of a uniform solid disk of mass 2.40 kg and diameter 0.420 m. A)After the system is released, find the horizontal tension in the wire. B) After the system is released, find the vertical tension in the wire. C)After the system is released, find the acceleration of...
A textbook of mass 2.09 kg rests on a frictionless, horizontal surface. A cord attached to...
A textbook of mass 2.09 kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.130 m , to a hanging book with mass 3.02 kg . The system is released from rest, and the books are observed to move a distance 1.12 m over a time interval of 0.790 s . What is the tension in the part of the cord attached to the textbook? What is the tension...
The system shown in the figure below consists of a mass M = 4.1-kg block resting...
The system shown in the figure below consists of a mass M = 4.1-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging m = 2.4-kg block. The pulley is a uniform disk of radius 8.0 cm and mass 0.60 kg. (a) What is the acceleration of each block? acceleration of M = 4.1 kg acceleration of m...
A textbook of mass 1.91 kg rests on a frictionless, horizontal surface. A cord attached to...
A textbook of mass 1.91 kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.200 m, to a hanging book with mass 3.03 kg. The system is released from rest, and the books are observed to move a distance 1.19 mm over a time interval of 0.790 s. 1. What is the tension in the part of the cord attached to the textbook? 2. What is the tension in...
Two masses, m1= 1.00 kg and m2= 2.00 kg, are attached to the ends of a...
Two masses, m1= 1.00 kg and m2= 2.00 kg, are attached to the ends of a light cord, which passes over a frictionless pulley in the shape of a uniform disk of mass 3.00 kg. How long does it take the 2.00 kg mass to fall a vertical distance of 1.00 m? What is the tension of either side of the pulley? (Answers: t= 0.958 sec; T1= 12.0 N; T2= 15.2 N I just need help with the steps for...
A block of mass 1.970  kg is free to slide on a frictionless, horizontal surface. A cord...
A block of mass 1.970  kg is free to slide on a frictionless, horizontal surface. A cord attached to the block passes over a pulley whose diameter is 0.150  m , to a hanging book with mass 3.030  kg . The system is released from rest, and both the book and the block are observed to move a distance 1.19  m over a time interval of 0.780  s ; at the instant at which that distance is measured, the book is still moving downwards and...
Block A, mass 5.00 kg, rests on a surface with μk = 0.600. A massless rope...
Block A, mass 5.00 kg, rests on a surface with μk = 0.600. A massless rope is attached to its right side, and runs over a pulley, treated as a thin ring, mass 1.00 kg and radius 5.00 cm, to Block B, mass 7.00 kg, which hangs from the rope and is held at rest. The rope does not slip over the pulley, and the pulley spins on a frictionless axle. Block B is released from rest, and after an...
Problem 2. (based on Young & Freedman 9.47) A frictionless pulley has the shape of a...
Problem 2. (based on Young & Freedman 9.47) A frictionless pulley has the shape of a uniform solid disk of mass 2.50 kg and radius .0200 m. A stone of unknown mass is attached to a very light wire that is wrapped around the rim of the pulley. When the system is released from rest, the stone accelerates downward at 5.9 m/s 2 (a) What is the angular acceleration of the pulley? Answer: 295 rad/s 2 (b) Find the torque...
There is a 4 kg block resting on a horizontal ledge. The coefficient of friction between...
There is a 4 kg block resting on a horizontal ledge. The coefficient of friction between the ledge and the clock is 0.25. The block is attached to a string that passes over a pulley and the other end of the string is attached to a hanging 2 kg block. The pulley is a uniform disk of radius 8 cm and mass 0.6 kg. Find the acceleration of each block and the tensions in the segments of string attached to...