Question

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is...

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 260 N applied to its edge causes the wheel to have an angular acceleration of 0.836 rad/s2.

(a) What is the moment of inertia of the wheel?
kg · m2

Homework Answers

Answer #1

Solution:-

Given –

Radius (r) = 0.330 m

Tangential force (F) = 260 N

Angular acceleration (a) = 0.836 rad/s^2

The moment of inertia of the wheel is-

T = I*a = T = r*F

Putting given values in above equation,

0.330*260 = I*0.836

I = 102.63 kg.m2

The moment of inertia of the wheel is 102.63 kg.m2

The moment of inertia, otherwise known as the mass moment of inertia, angular mass or rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about rotational axis.

Its SI unit is – kg.m2

  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A heavy turntable, used for rotating large objects, is a solid cylindrical wheel that can rotate...
A heavy turntable, used for rotating large objects, is a solid cylindrical wheel that can rotate about its central axle with negligible friction. The radius of the wheel is 0.330 m. A constant tangential force of 300 N applied to its edge causes the wheel to have an angular acceleration of 0.876 rad/s2. (a) What is the moment of inertia of the wheel (in kg · m2)? _____ kg · m2 (b) What is the mass (in kg) of the...
A wheel with radius 0.0600 m rotates about a horizontal frictionless axle at its center. The...
A wheel with radius 0.0600 m rotates about a horizontal frictionless axle at its center. The moment of inertia of the wheel about the axle is 2.50 kg⋅m2. The wheel is initially at rest. Then at t=0 a force F(t)=(5.50N/s)t is applied tangentially to the wheel and the wheel starts to rotate. What is the magnitude of the force at the instant when the wheel has turned through 8.00 revolutions?
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from rest and rotates without friction about a fixed axis through its center of mass. A string is wrapped around the circumference of the cylinder and pulled using a constant force F. The resulting angular acceleration of the cylinder is 5.0 rad/s2. What's the angular velocity after 4.0 s, in radians per second? (The moment of inertia of the cylinder is 1 half M R...
A solid cylinder has a mass of 100 kg and radius 0.225m. The cylinder is attached...
A solid cylinder has a mass of 100 kg and radius 0.225m. The cylinder is attached to a frictionless horizontal axle. A long (light weight) cable is wrapped around the cylinder. Attached to the end of the cable is a 1.50 kg mass. The system is initially stationary. The hanging mass is then released. The mass pulls on the cable as it falls and this causes the cylinder to rotate. a) What is the velocity of the hanging mass after...
A grinding wheel is a uniform cylinder with a radius of 6.60 cm and a mass...
A grinding wheel is a uniform cylinder with a radius of 6.60 cm and a mass of 0.530 kg . Calculate its moment of inertia about its center. Calculate the applied torque needed to accelerate it from rest to 1600 rpm in 6.30 s if it is known to slow down from 1600 rpm to rest in 51.0 s .
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from rest and rotates without friction about a fixed axis through its center of mass. A string is wrapped around the circumference of the cylinder and pulled using a constant force F. The resulting angular acceleration of the cylinder is 5.0 rad/s2. (The moment of inertia of the cylinder is 1/2 MR^2.) 1. What's the force F, in Newtons? 2. What's the angular velocity after...
A mass hung on a string that is wrapped around an axle on a wheel produces...
A mass hung on a string that is wrapped around an axle on a wheel produces a tension in the string of 6.00 N. The axle has a radius of 0.050 m. The wheel has a mas of 4.000 kg and a radius of 0.100 m, and a thickness of 0.050m. 1)What is the torque produced by the tension on the axle, show your work. 2) Regarding the shape of the wheel as that of a uniform, solid cylinder, what...
A 2.00 kg grinding wheel is in the form of a solid cylinder of radius 0.130...
A 2.00 kg grinding wheel is in the form of a solid cylinder of radius 0.130 m . A-What constant torque will bring it from rest to an angular speed of 1000 rev/min in 2.90 s ? B-Through what angle has it turned during that time? C-Through what angle has it turned during that time? Use equation W=τz(θ2−θ1)=τzΔθ to calculate the work done by the torque. D-What is the grinding wheel's kinetic energy when it is rotating at 1000 rev/min...
A solid cylindrical disk has a radius of 0.19 m. It is mounted to an axle...
A solid cylindrical disk has a radius of 0.19 m. It is mounted to an axle that is perpendicular to the circular end of the disk at its center. When a 40-N force is applied tangentially to the disk, perpendicular to the radius, the disk acquires an angular acceleration of 110 rad/s2. What is the mass of the disk? kg
A grinding wheel is a uniform cylinder with a radius of 7.50 cm and a mass...
A grinding wheel is a uniform cylinder with a radius of 7.50 cm and a mass of 0.670 kg . Part A Calculate its moment of inertia about its center. Express your answer to three significant figures and include the appropriate units. Part B Calculate the applied torque needed to accelerate it from rest to 1750 rpm in 7.80 s . Take into account a frictional torque that has been measured to slow down the wheel from 1500 rpm to...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT