Question

When a mass of m = 254 g is attached to a spring and the mass-spring system is set into oscillatory motion, the period of the motion is T = 0.427 s. Determine the following. (a) frequency of the motion in hertz Hz (b) force constant of the spring N/m (c) amplitude of the oscillation, if the total energy of the oscillating system is 0.288 J m

Answer #1

A mass of 187 g is attached to a spring and set into simple
harmonic motion with a period of 0.286 s. If the total energy of
the oscillating system is 6.94 J, determine the following.
(a) maximum speed of the object
m/s
(b) force constant
N/m
(c) amplitude of the motion
m

8. A 0.40-kg mass is attached to a spring with a force constant
of k = 387 N/m, and the mass–spring system is set into
oscillation with an amplitude of A = 3.7 cm. Determine the
following.
(a) mechanical energy of the system
J
(b) maximum speed of the oscillating mass
m/s
(c) magnitude of the maximum acceleration of the oscillating
mass
m/s2

A mass of 0.380 kg is attached to a spring and set into
oscillation on a horizontal frictionless surface. The simple
harmonic motion of the mass is described by
x(t) = (0.800 m)cos[(10.0
rad/s)t].
Determine the following.
(a) amplitude of oscillation for the oscillating mass
____m
(b) force constant for the spring
____ N/m
(c) position of the mass after it has been oscillating for one half
a period
______ m
(d) position of the mass one-sixth of a period...

A mass of 0.12 kg is attached to a spring and set into
oscillation on a horizontal frictionless surface. The simple
harmonic motion of the mass is described by
x(t) = (0.42 m)cos[(14
rad/s)t].
Determine the following.
(a) amplitude of oscillation for the oscillating mass
(b) force constant for the spring
(c) position of the mass after it has been oscillating for one half
a period
(d) position of the mass one-third of a period after it has been
released...

A mass of 0.520 kg is attached to a spring and set into
oscillation on a horizontal frictionless surface. The simple
harmonic motion of the mass is described by x(t) = (0.780
m)cos[(18.0 rad/s)t]. Determine the following. (a) amplitude of
oscillation for the oscillating mass (b) force constant for the
spring N/m (c) position of the mass after it has been oscillating
for one half a period (d) position of the mass one-third of a
period after it has been...

A 6.5-kg mass is attached to an ideal 750-N/m spring. If the
system undergoes simple harmonic motion, what are the frequency,
angular frequency, and period of the motion?
The frequency, f =
The angular frequency, ω =
The period, T =
If the total mechanical energy of the system is 72 J, what are
the amplitude, maximum speed and maximum acceleration of the
motion?
The amplitude, A =
The maximum speed, vmax =
The maximum acceleration, amax =

A simple harmonic oscillator consists of a 675-g block attached
to a lightweight spring. The total energy of the system is 9.40 J,
and its period of oscillation is 0.340 s.
(a) What is the maximum speed of the block?
Did you accidentally divide or take the inverse in your
calculation? m/s
(b) What is the force constant of the spring?
N/m
(c) What is the amplitude of the motion of the block?
m

A spring-mass system consists of a 0.5 kg mass attached to a
spring with a force constant of k = 8 N/m. You may neglect the mass
of the spring. The system undergoes simple harmonic motion with an
amplitude of 5 cm. Calculate the following: 1. The period T of the
motion 2. The maximum speed Vmax 3. The speed of the object when it
is at x = 3.5 cm from the equilibrium position. 4. The total energy
E...

A particle with mass 2.61 kg oscillates horizontally at the end
of a horizontal spring. A student measures an amplitude of 0.923 m
and a duration of 129 s for 65 cycles of oscillation. Find the
frequency, ?, the speed at the equilibrium position, ?max, the
spring constant, ?, the potential energy at an endpoint, ?max, the
potential energy when the particle is located 68.5% of the
amplitude away from the equiliibrium position, ?, and the kinetic
energy, ?, and...

A 301 g weight attached to a horizontal spring moves in simple
harmonic motion with a period of 0.260 s. The total mechanical
energy of the spring-mass system is 5.46 J.
(a)
What is the maximum speed of the weight (in m/s)?
m/s
(b)
What is the spring constant (in N/m)?
N/m
(c)
What is the amplitude of the motion (in m)?
m

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 7 minutes ago

asked 15 minutes ago

asked 50 minutes ago

asked 52 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago