Question

The approximate velocity to orbit earth is 7800 m/s. Assume that this is 200km above the...

The approximate velocity to orbit earth is 7800 m/s. Assume that this is 200km above the Earth, and that the mass of the orbiting spacecraft is 30,000 kg. How many joules of fuel energy would the spacecraft need to start with in order to reach orbit at that velocity?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A spacecraft of mass 6.00 ? 104 kg is in a circular orbit at an altitude...
A spacecraft of mass 6.00 ? 104 kg is in a circular orbit at an altitude of 200 km above the Earth's surface. Mission Control wants to fire the engines so as to put the spacecraft in an elliptical orbit around the Earth with an apogee of 4.00 ? 104 km. How much energy must be used from the fuel to achieve this orbit? (Assume that all of the fuel energy goes into increasing the orbital energy. This model will...
A spacecraft of 150 kg mass is in a circular orbit about the Earth at a...
A spacecraft of 150 kg mass is in a circular orbit about the Earth at a height h = 5RE. (a) What is the period of the spacecraft's orbit about the Earth? T = answer in hours (b) What is the spacecraft's kinetic energy? K = Units in J (c) Express the angular momentum L of the spacecraft about the center of the Earth in terms of its kinetic energy K. (Use the following as necessary: RE for the radius...
NASA launches a satellite into orbit at a height above the surface of the Earth equal...
NASA launches a satellite into orbit at a height above the surface of the Earth equal to the Earth's mean radius. The mass of the satellite is 830 kg. (Assume the Earth's mass is 5.97 1024 kg and its radius is 6.38 106 m.) (a) How long, in hours, does it take the satellite to go around the Earth once? h (b) What is the orbital speed, in m/s, of the satellite? m/s (c) How much gravitational force, in N,...
A satellite is in a circular orbit around the Earth at an altitude of 3.84  106 m....
A satellite is in a circular orbit around the Earth at an altitude of 3.84  106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38  106 m, and the mass of the Earth is 5.98  1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s2 toward the center of the...
A satellite orbits the Earth uniformly in a circular orbit with a velocity of magnitude 4.00...
A satellite orbits the Earth uniformly in a circular orbit with a velocity of magnitude 4.00 km/s. Use Newton's gravitation force as the force in Newton's Law of Acceleration, using also the centripetal acceleration . Solve for radius r of the satellite's orbit in terms of v . (a) Find then the altitude of the satellite above the surface of the Earth. Earth's mass and radius are 5.9810 kg and 6.3810 km. (b) Find the time it takes the satellite...
A 160 kg satellite is orbiting on a circular orbit 7655 km above the Earth's surface....
A 160 kg satellite is orbiting on a circular orbit 7655 km above the Earth's surface. Determine the speed of the satellite. (The mass of the Earth is 5.97×1024 kg, and the radius of the Earth is 6370 km.) (in km/s)
A spy drone is in orbit 230 km above the surface of the earth. If the...
A spy drone is in orbit 230 km above the surface of the earth. If the mass of the earth is 5.98 times 10^24 kg, and the radius of the earth is 6.38 times 10^6 m, what is the period of orbit of the drone?
A satellite of mass 180 kg is placed into Earth orbit at a height of 700 km above the surface....
A satellite of mass 180 kg is placed into Earth orbit at a height of 700 km above the surface. (a) Assuming a circular orbit, how long does the satellite take to complete one orbit?  h (b) What is the satellite's speed?  m/s (c) Starting from the satellite on the Earth's surface, what is the minimum energy input necessary to place this satellite in orbit? Ignore air resistance but include the effect of the planet's daily rotation.
A satellite is in a circular orbit around the Earth at an altitude of 3.32 106...
A satellite is in a circular orbit around the Earth at an altitude of 3.32 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 106 m, and the mass of the Earth is 5.98 1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s2 toward the...
A spacecraft is orbiting around a planet. Its orbital velocity is v = 8,680 m/s. Dark...
A spacecraft is orbiting around a planet. Its orbital velocity is v = 8,680 m/s. Dark force attacks the planet and is about to blow up the planet. A crew of the spacecraft decides to escape from the planet as soon as possible. What is the escape velocity of the spacecraft from this orbit in km/s? (Hint: The motion of the spacecraft is uniform circular motion).