Question

An object with mass 2.3 kg is executing simple harmonic motion, attached to a spring with spring constant 330 N/m . When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.50 m/s . Part A Calculate the amplitude of the motion. Part B Calculate the maximum speed attained by the object.

Answer #1

Mass of the object = m = 2.3 kg

Spring constant = k = 330 N/m

Amplitude of the motion = A

Maximum speed of the object = V_{max}

Speed of the object at a distance of 0.02 m from equilibrium = V = 0.5 m/s

X = 0.02 m

The total energy of the system remains constant and is equal to the sum of potential energy of the spring and the kinetic energy of the object.

The total energy of the system is equal to the potential energy stored in the spring the object has maximum displacement(amplitude) or the kinetic energy of the object when it is at the equilibrium position.

kA^{2}/2 = kX^{2}/2 + mV^{2}/2

kA^{2} = kX^{2} = mV^{2}

(330)A^{2} = (330)(0.02)^{2} +
(2.3)(0.5)^{2}

A = 0.0463 m

mV_{max}^{2}/2 = kX^{2}/2 +
mV^{2}/2

mV_{max}^{2} = kX^{2} +
mV^{2}

(2.3)V_{max}^{2} = (330)(0.02)^{2} +
(2.3)(0.5)^{2}

V_{max} = 0.554 m/s

A) Amplitude of the motion = 0.0463 m

B) Maximum speed of the object = 0.554 m/s

An object with mass 2.8 kg is executing simple harmonic motion,
attached to a spring with spring constant 320 N/m . When the object
is 0.021 m from its equilibrium position, it is moving with a speed
of 0.65 m/s . Calculate the amplitude of the motion. Calculate the
maximum speed attained by the object.

An object with mass 3.8 kg is executing simple harmonic motion,
attached to a spring with spring constant 260 N/mN/m . When the
object is 0.017 mm from its equilibrium position, it is moving with
a speed of 0.65 m/s .
Calculate the amplitude of the motion.
Calculate the maximum speed attained by the object.

An object with mass 2.5 kg is attached to a spring with spring
stiffness constant k = 270 N/m and is executing simple harmonic
motion. When the object is 0.020 m from its equilibrium position,
it is moving with a speed of 0.55 m/s.
(a) Calculate the amplitude of the motion. ____m
(b) Calculate the maximum velocity attained by the object.
[Hint: Use conservation of energy.] ____m/s

A toy of mass 0.155 kg is undergoing simple harmonic motion
(SHM) on the end of a horizontal spring with force constant 305 N/m
. When the object is a distance 1.25×10−2 m from its
equilibrium position, it is observed to have a speed of 0.300 m/s
.
Part A) What is the total energy of the object
at any point of its motion?
E = ? J
Part B) What is the amplitude of the
motion?
A = ?...

A toy of mass 0.150 kg is undergoing simple harmonic motion
(SHM) on the end of a horizontal spring with force constant 300 N/m
. When the object is a distance 1.25×10?2 m from its equilibrium
position, it is observed to have a speed of 0.305 m/s .
a) What is the total energy of the object at any point of its
motion?
b) What is the amplitude of the motion?
c) What is the maximum speed attained by the...

A) A mass on a spring vibrates in simple harmonic motion at a
frequency of 4.0 Hz and an amplitude of 8.0 cm. If a timer is
started when its displacement from equilibrium is a maximum (hence
x = 8 cm when t = 0), what is the displacement of the mass when t =
3.7 s?
B) A mass of 4.0 kg, resting on a horizontal, frictionless
surface, is attached on the right to a horizontal spring with
spring...

A mass of 187 g is attached to a spring and set into simple
harmonic motion with a period of 0.286 s. If the total energy of
the oscillating system is 6.94 J, determine the following.
(a) maximum speed of the object
m/s
(b) force constant
N/m
(c) amplitude of the motion
m

A metal ball attached to a spring moves in simple harmonic
motion. The amplitude of the ball's motion is 11.0 cm, and the
spring constant is 5.50 N/m. When the ball is halfway between its
equilibrium position and its maximum displacement from equilibrium,
its speed is 27.2 cm/s.
(a) What is the mass of the ball (in kg)?
(b) What is the period of oscillation (in s)?
(c) What is the maximum acceleration of the ball? (Enter the
magnitude in...

A spring-mass system consists of a 0.5 kg mass attached to a
spring with a force constant of k = 8 N/m. You may neglect the mass
of the spring. The system undergoes simple harmonic motion with an
amplitude of 5 cm. Calculate the following: 1. The period T of the
motion 2. The maximum speed Vmax 3. The speed of the object when it
is at x = 3.5 cm from the equilibrium position. 4. The total energy
E...

An object of 200,000 g is attached to a spring and executes a
simple harmonic motion with a period of 0.650 s. If the total
energy of the system is 8,700 J, find (a) the maximum speed of the
object, (b) the force constant of the spring and (c) the amplitude
of the movement.
a
6.595 m/s, 18.688 N/m, 1.197 m
b
9.327 m/s, 12.147 N/m, 0.965 m
c
9.327 m/s, 18.688 N/m, 0.965 m
d
6.595 m/s, 18.688 N/m,...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 7 minutes ago

asked 25 minutes ago

asked 26 minutes ago

asked 30 minutes ago

asked 30 minutes ago

asked 32 minutes ago

asked 45 minutes ago

asked 49 minutes ago

asked 49 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago