Question

for water waves For every trial, the waves travel for exactly the same amount of time...

for water waves

For every trial, the waves travel for exactly the same amount of time to the same pointfrom each of the taps. Doesn’t that mean every “Wave state” should be a “trough?” Explain.

Homework Answers

Answer #1

Please rate

if any mistake in this answer please comment i will clarify your doubt . thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using a PHET light waves stimulator: Turn only bottom light on then measure how long it...
Using a PHET light waves stimulator: Turn only bottom light on then measure how long it takes for the center of the trough of the wave to be at that point you marked. Turn the bottom light off and allow the waves to dissipate. Next, turn on the light at the top and allow the simulation to run for exactly the amount of time measured. Record the “state of the wave” at your marked point. Is it a trough, a...
These two waves travel along the same string: y1 = (4.37 mm) sin(2.17πx - 440πt) y2...
These two waves travel along the same string: y1 = (4.37 mm) sin(2.17πx - 440πt) y2 = (5.75 mm) sin(2.17πx - 440πt + 0.754πrad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.45 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...
These two waves travel along the same string: y1 = (3.59 mm) sin(2.23πx - 380πt) y2...
These two waves travel along the same string: y1 = (3.59 mm) sin(2.23πx - 380πt) y2 = (5.61 mm) sin(2.23πx - 380πt + 0.861πrad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.21 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...
These two waves travel along the same string: y1 = (4.14 mm) sin(2.31πx - 430πt) y2...
These two waves travel along the same string: y1 = (4.14 mm) sin(2.31πx - 430πt) y2 = (5.79 mm) sin(2.31πx - 430πt + 0.771πrad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.24 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...
These two waves travel along the same string: y1 = (4.57 mm) sin(2.24πx - 320πt) y2...
These two waves travel along the same string: y1 = (4.57 mm) sin(2.24πx - 320πt) y2 = (5.81 mm) sin(2.24πx - 320πt + 0.800π rad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 4.93 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the...
These two waves travel along the same string: y1 = (4.17 mm) sin(2.24?x - 300?t), y2...
These two waves travel along the same string: y1 = (4.17 mm) sin(2.24?x - 300?t), y2 = (5.96 mm) sin(2.24?x - 300?t + 0.727?rad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.20 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...
Today, the waves are crashing onto the beach every 6 seconds. The times from when a...
Today, the waves are crashing onto the beach every 6 seconds. The times from when a person arrives at the shoreline until a crashing wave is observed follows a Uniform distribution from 0 to 6 seconds. Round to 4 decimal places where possible. a. The mean of this distribution is b. The standard deviation is c. The probability that wave will crash onto the beach exactly 3.3 seconds after the person arrives is P(x = 3.3) = d. The probability...
Suppose you are interested in determining the amount of time in minutes that commuters travel to...
Suppose you are interested in determining the amount of time in minutes that commuters travel to school. You would like to use a 95% confidence that your sample mean is within 1.5 minutes of the true population mean. If the commute times have a standard deviation of 10 minutes, how many students should you include in your sample?
1)Today, the waves are crashing onto the beach every 5.6 seconds. The times from when a...
1)Today, the waves are crashing onto the beach every 5.6 seconds. The times from when a person arrives at the shoreline until a crashing wave is observed follows a Uniform distribution from 0 to 5.6 seconds. Round to 4 decimal places where possible. a. The mean of this distribution is b. The standard deviation is   c. The probability that wave will crash onto the beach exactly 0.4 seconds after the person arrives is P(x = 0.4) =   d. The probability...
Albert and Allison borrow exactly the same amount from Liberty Financial. Albert will repay his loan...
Albert and Allison borrow exactly the same amount from Liberty Financial. Albert will repay his loan with 20 end of year annual payments. Albert's first payment will be 950, and each of his successive payments will be 950 greater than the one before. Allison will make level payments of 50000 at times T, 2T, 3T, 4T. Both Albert and Allisonís loans are subject to the same annual effective rate of 5%. Determine the time of Allisonís first payment.