Question

Q1-For a mass 206g oscillating on a spring, its maximum speed is 0.75m/s. If the spring...

Q1-For a mass 206g oscillating on a spring, its maximum speed is 0.75m/s. If the spring constant is 71.2N/m, what is the maximum stretch (in unit of cm) of the spring during oscillation?

Q2-A spring is stretched, and stores an elastic potential energy of 332 joule. How much (in cm) has the spring be stretched if it has a spring constant of 136 N/m?

Q3For the application part of this experiment, you have a spring of spring constant 154N/m. You measured that the hanging mass has an oscillation amplitude 4.71cm, and a maximum speed 0.78m/s. How many gram is the mass?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a.) A 100 g mass is oscillating on a spring with a spring constant of 3.0...
a.) A 100 g mass is oscillating on a spring with a spring constant of 3.0 N/m. The mass is initially at 15 cm from the equilibrium position with an initial speed of 80 cm/s. What is the oscillation amplitude? b.) A 200 g mass is oscillating on a spring with a spring constant of 4.0 N/m. The mass is initially at 15 cm from the equilibrium position with an initial speed of 50 cm/s. What is its maximum speed?
An oscillating block-spring system has a mechanical energy of 2.46 J, an amplitude of 12.5 cm,...
An oscillating block-spring system has a mechanical energy of 2.46 J, an amplitude of 12.5 cm, and a maximum speed of 1.29 m/s. Find (a) the spring constant, (b) the mass of the block and (c) the frequency of oscillation.
An oscillating block-spring system has a mechanical energy of 1.53 J, an amplitude of 9.82 cm,...
An oscillating block-spring system has a mechanical energy of 1.53 J, an amplitude of 9.82 cm, and a maximum speed of 2.41 m/s. Find (a) the spring constant, (b) the mass of the block and (c) the frequency of oscillation.
A 2 kg object is attached to a spring and is oscillating on a horizontal surface....
A 2 kg object is attached to a spring and is oscillating on a horizontal surface. When the object has a speed of 10 m/s, the spring is stretched 2 m. The spring constant is 10 N/m. Neglect friction. Find the maximum speed of the object. What is the maximum stretch in the spring? What is the object's speed when the spring is stretched 1 m? What is the stretch in the spring when the object's speed is 5 m/s?
A 0.58 kg mass is attached to a light spring with a force constant of 31.9...
A 0.58 kg mass is attached to a light spring with a force constant of 31.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...
A 0.68 kg mass is attached to a light spring with a force constant of 36.9...
A 0.68 kg mass is attached to a light spring with a force constant of 36.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass    m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm    m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium...
8. A 0.40-kg mass is attached to a spring with a force constant of k =...
8. A 0.40-kg mass is attached to a spring with a force constant of k = 387 N/m, and the mass–spring system is set into oscillation with an amplitude of A = 3.7 cm. Determine the following. (a) mechanical energy of the system J (b) maximum speed of the oscillating mass m/s (c) magnitude of the maximum acceleration of the oscillating mass m/s2
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is stretched 0.0566 m and released. It completes 12 oscillations in 4.62 s. Calculate: a) the oscillation frequency, b) the oscillation period, c) the spring force constant, d) the total mechanical energy of the oscillating spring, e) the maximum speed of the oscillating spring.
A 0.24 kg mass is attached to a light spring with a force constant of 30.9...
A 0.24 kg mass is attached to a light spring with a force constant of 30.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass b) speed of the oscillating mass when the spring is compressed 1.5 cm (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position (d) value of...
An oscillating block–spring system has a mechanical energy of 5.00 J, an amplitude of 22.0 cm,...
An oscillating block–spring system has a mechanical energy of 5.00 J, an amplitude of 22.0 cm, and a maximum speed of 3.20 m/s. Find the frequency of oscillation.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT