Question

A 2.15 kg mass attached to a spring oscillates with a period of 0.450 s and...

A 2.15 kg mass attached to a spring oscillates with a period of 0.450 s and an amplitude of 25.0 cm.

(a) Find the total mechanical energy of the system

(b) Find the maximum speed of the mass.

Homework Answers

Answer #1

E = 1/2*(2.15* (2π/0.45)2 *0.252 ) = 13.09J

B)

At maximum speed, the kinetic energy of the object is equal to the total mechanical energy of the system. That is:

K=E

The kinetic energy of an object with mass, m, moving with velocity, v, is equal to:

K=1/2*(mv​​​​​2​ )

=> 13.09 = 0.5* 2.15 * v​​​​​​2​​​

V = 3.48 m/s

I hope it was helpful..

​​​​

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Part A A block of unknown mass is attached to a spring with a spring constant...
Part A A block of unknown mass is attached to a spring with a spring constant of 5.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 28.0 cm/s. (a) Calculate the mass of the block. ________kg (b) Calculate the period of the motion. ________s (c) Calculate the maximum acceleration of the block. ________m/s2 Part B A block-spring...
8. A 0.40-kg mass is attached to a spring with a force constant of k =...
8. A 0.40-kg mass is attached to a spring with a force constant of k = 387 N/m, and the mass–spring system is set into oscillation with an amplitude of A = 3.7 cm. Determine the following. (a) mechanical energy of the system J (b) maximum speed of the oscillating mass m/s (c) magnitude of the maximum acceleration of the oscillating mass m/s2
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz...
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz . At t =0s, the mass is at x= 4.20 cm and has vx =− 23.0 cm/s . Determine: (a) the period s (b) the angular frequency rad/s (c) the amplitude cm (d) the phase constant rad (e) the maximum speed cm/s (f) the maximum acceleration cm/s2 (g) the total energy J (h) the position at t = 4.2s
A mass attached to a spring oscillates with a period of 1.12·s and an amplitude of...
A mass attached to a spring oscillates with a period of 1.12·s and an amplitude of 40·cm. At time t = 0 the mass is at x = +28·cm and is moving in the positive direction (away from equilibrium). What is the phase constant? (degrees) Where is it at time t = 4.5·s? (cm)
12. A 0.85-kg mass is attached to a spring that oscillates on a frictionless surface. The...
12. A 0.85-kg mass is attached to a spring that oscillates on a frictionless surface. The position of the oscillating mass is expressed as x(t) = 0.25 sin(5.5t), where x is in meters and t is in seconds. a) What is the amplitude? b) What is the period? c) What is the spring constant? d) What is the total energy of the system?
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force...
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force constant of k = 8 N/m. You may neglect the mass of the spring. The system undergoes simple harmonic motion with an amplitude of 5 cm. Calculate the following: 1. The period T of the motion 2. The maximum speed Vmax 3. The speed of the object when it is at x = 3.5 cm from the equilibrium position. 4. The total energy E...
A metal body with a mass 4.50 kg is connected to a spring with a force...
A metal body with a mass 4.50 kg is connected to a spring with a force constant of 475 N/m, and it oscillates horizontally with an amplitude of 2.20 cm. (a) What is the total mechanical energy (in J) of the body–spring system? J (b) What is the maximum speed (in m/s) of the oscillating body? m/s (c) What is the maximum magnitude of acceleration (in m/s2) of the oscillating body
1. A mass is attached to a horizontal spring, and oscillates with a period of 1.2...
1. A mass is attached to a horizontal spring, and oscillates with a period of 1.2 s and with an amplitude of 14 cm. At t = 0 s, the mass is 14 cm to the right of the equilibrium position. a) Write down the function for the position, velocity, and acceleration of the mass as a function of time. The only variable you should have in your expressions is time. Make sure you indicate the units for each function....
A 6.5-kg mass is attached to an ideal 750-N/m spring. If the system undergoes simple harmonic...
A 6.5-kg mass is attached to an ideal 750-N/m spring. If the system undergoes simple harmonic motion, what are the frequency, angular frequency, and period of the motion? The frequency, f = The angular frequency, ω = The period, T =   If the total mechanical energy of the system is 72 J, what are the amplitude, maximum speed and maximum acceleration of the motion? The amplitude, A =   The maximum speed, vmax = The maximum acceleration, amax =
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period of 0.50 s. The surface is frictionless. The amplitude of the oscillation is 0.1 m. (a) What is the spring constant of the spring? (b) What is the total mechanical energy of the system (the spring and block system)? (c) What is the maximum speed of the block? (d) What is the speed of the block when the displacement...