Question

A 0.85-kg air cart is attached to a spring and allowed to oscillate. If the displacement...

A 0.85-kg air cart is attached to a spring and allowed to oscillate. If the displacement of the air cart from equilibrium is x=(10.0cm)cos[(2.00s−1)t+π], find the maximum kinetic energy of the cart. Find the maximum force exerted on it by the spring.

Homework Answers

Answer #1

Here,

A = 10 cm = 0.10 m

w = 2 rad/s

for the maximum kinetic energy

maximum velocity = A * w = 0.10 *2 = 0.20 m/s

maximum kinetic energy = 0.50 * m * v^2

maximum kinetic energy = 0.50 * 0.85 * 0.20^2

maximum kinetic energy = 0.017 J

the maximum kinetic energy is 0.017 J

----------------------------

maximum force exerted = m * amax

maximum force exerted = 0.85 * A * w^2

maximum force exerted = 0.85 * 0.10 * 2^2

maximum force exerted = 0.34 N

the maximum force exerted is 0.34 N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.150-kg cart is attached to an ideal spring with a force constant of (spring constant)...
A 0.150-kg cart is attached to an ideal spring with a force constant of (spring constant) of 3.58 N/m undergoes simple harmonic motion and has a speed of 1.5 m/s at the equilibrium position. At what distance from the equilibrium position are the kinetic energy and potential energy of the system the same?
The displacement of a block of mass 0.933 kg attached to a spring whose spring constant...
The displacement of a block of mass 0.933 kg attached to a spring whose spring constant is 66N/m is given by x=Asin(ωt) where A=0.21m. In the first complete cycle find the values of x and t at which the kinetic energy is equal to one half the potential energy. First position:  cm...... First time:  s. Second position:  cm...... Second time:  s.. Third position:  cm...... Third time:  s. Fourth position:  cm...... Fourth time:  s.
Consider a 0.85 kg mass oscillating on a massless spring with spring constant of 45 N/m....
Consider a 0.85 kg mass oscillating on a massless spring with spring constant of 45 N/m. This object reaches a maximum position of 12 cm from equilibrium. a) Determine the angular frequency of this mass. Then, determine the b) force, c) acceleration, d) elastic potential energy, e) kinetic energy, and f) velocity that it experiences at its maximum position. Determine the g) force, h) acceleration, i) elastic potential energy, j) kinetic energy, and k) velocity that it experiences at the...
An air – track cart attached to a spring completes one oscillation every 2.4 sec. At...
An air – track cart attached to a spring completes one oscillation every 2.4 sec. At t = 0, the cart is released from rest at a distance of 0.10 m from its equilibrium position. What is the position of the cart at (a) 2.7 sec (b) 3.0 sec.
A 1-kg mass is attached to a spring whose constant is 16 N/m and the entire...
A 1-kg mass is attached to a spring whose constant is 16 N/m and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 10 times the instantaneous velocity. Determine the equation if (A) The weight is released 60 cm below the equilibrium position. x(t)= ; (B) The weight is released 60 cm below the equilibrium position with an upward velocity of 17 m/s. x(t)= ; Using the equation from part b, (C)...
A 5 kg object is attached to a spring and stretches it 10cm on its own....
A 5 kg object is attached to a spring and stretches it 10cm on its own. There is no damping in the system, but an external force is present, described by the function F(t) = 8 cos ωt. The object is initially displaced 25 cm downward from equilibrium with no initial velocity and the system experiences resonance. Find the displacement of the object at any time t.
12. A 0.85-kg mass is attached to a spring that oscillates on a frictionless surface. The...
12. A 0.85-kg mass is attached to a spring that oscillates on a frictionless surface. The position of the oscillating mass is expressed as x(t) = 0.25 sin(5.5t), where x is in meters and t is in seconds. a) What is the amplitude? b) What is the period? c) What is the spring constant? d) What is the total energy of the system?
A 2.9-kg cart is attached to a horizontal spring for which the spring constant is 60...
A 2.9-kg cart is attached to a horizontal spring for which the spring constant is 60 N/m . The system is set in motion when the cart is 0.27 m from its equilibrium position, and the initial velocity is 1.8 m/s directed away from the equilibrium position. What is the amplitude of the oscillation? What is the speed of the cart at its equilibrium position?
A metal cylinder with a mass of 1.20 kg is attached to a spring and is...
A metal cylinder with a mass of 1.20 kg is attached to a spring and is able to oscillate horizontally with negligible friction. The cylinder is pulled to a distance of 0.200 mfrom its equilibrium position, held in place with a force of 17.0 N, and then released from rest. It then oscillates in simple harmonic motion. (The cylinder oscillates along the x-axis, where x = 0 is the equilibrium position.) (a) What is the spring constant (in N/m)? _____...
An object of mass of 2.7 kg is attached to a spring with a force constant...
An object of mass of 2.7 kg is attached to a spring with a force constant of k = 280 N/m. At t = 0, the object is observed to be 2.0 cm from its equilibrium position with a speed of 55 cm/s in the -x direction. The object undergoes simple harmonic motion “back and forth motion” without any loss of energy. (a) Sketch a diagram labeling all forces on the object and calculate the maximum displacement from equilibrium of...