Question

A diverging lens of focal length f = -9.7 cm forms images of an object situated...

A diverging lens of focal length f = -9.7 cm forms images of an object situated at various distances.

(a) If the object is placed p1 = 29.1 cm from the lens, locate the image, state whether it's real or virtual, and find its magnification.

q = cm
M =

(b) Repeat the problem when the object is at p2 = 9.7 cm.

q = cm
M =

(c) Repeat the problem again when the object is 4.85 cm from the lens.

q = cm
M =

Use the above values to help you work this exercise. Repeat the calculation, finding the position of the image and the magnification if the object is 19.3 cm from the lens.

q = cm
M =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A diverging lens has a focal length of -14.0 cm. Locate the images for each of...
A diverging lens has a focal length of -14.0 cm. Locate the images for each of the following object distances. For each case, state whether the image is real or virtual and upright or inverted, and find the magnification. (a) 28.0 cm ______ cm  --Location of image-- in front of the lens behind the lens no image formed real, erectreal, inverted    virtual, erectvirtual, inverted magnification __________✕ (b) 14.0 cm ________ cm  --Location of image-- in front of the lens behind the lens no...
A diverging lens has a focal length of -14.0 cm. Locate the images for each of...
A diverging lens has a focal length of -14.0 cm. Locate the images for each of the following object distances. For each case, state whether the image is real or virtual and upright or inverted, and find the magnification. (a) 28.0 cm ______________ cm   real, erect real, inverted virtual, erect virtual, inverted magnification ________________ X (b) 14.0 cm ______________ cm   virtual, erect virtual, inverted magnification ___________________ ? (c) 7.0 cm _______________ cm   real, erect real, inverted     virtual, erect virtual, inverted...
A diverging lens has a focal length of magnitude 21.8 cm. (a) Locate the images for...
A diverging lens has a focal length of magnitude 21.8 cm. (a) Locate the images for each of the following object distances. 43.6 cm distance      cm location      ---Select--- in front of the lens behind the lens 21.8 cm distance      cm location      ---Select--- in front of the lens behind the lens 10.9 cm distance      cm location      ---Select--- in front of the lens behind the lens (b) Is the image for the object at distance 43.6 real or virtual? realvirtual     Is the...
A diverging lens has a focal length of magnitude 17.6 cm. (a) Locate the images for...
A diverging lens has a focal length of magnitude 17.6 cm. (a) Locate the images for each of the following object distances. 35.2 cm distance      cm location      ---Select--- in front of the lens behind the lens 17.6 cm distance      cm location      ---Select--- in front of the lens behind the lens 8.8 cm distance      cm location      ---Select--- in front of the lens behind the lens (b) Is the image for the object at distance 35.2 real or virtual? realvirtual     Is the...
A diverging lens has a focal length of magnitude 24.4 cm. (a) Locate the images for...
A diverging lens has a focal length of magnitude 24.4 cm. (a) Locate the images for each of the following object distances. 48.8 cm distance      cm location      ---Select--- in front of the lens behind the lens 24.4 cm distance      cm location      ---Select--- in front of the lens behind the lens 12.2 cm distance      cm location      ---Select--- in front of the lens behind the lens (b) Is the image for the object at distance 48.8 real or virtual? realvirtual     Is the...
A diverging lens has a focal length of magnitude 23.6 cm. (a) Locate the images for...
A diverging lens has a focal length of magnitude 23.6 cm. (a) Locate the images for each of the following object distances. 47.2 cm distance cm location ---Select--- in front of behind 23.6 cm distance cm location ---Select--- in front of behind 11.8 cm distance cm location ---Select--- in front of behind (b) Is the image for the object at distance 47.2 real or virtual? realvirtual      Is the image for the object at distance 23.6 real or virtual? realvirtual      Is...
A diverging lens has a focal length of magnitude 24.8 cm. (a) Locate the images for...
A diverging lens has a focal length of magnitude 24.8 cm. (a) Locate the images for each of the following object distances. 49.6 cm distance______ cm distance24.8 cm _________ distance at 12.4cm_____ (d) Find the magnification for the object at distance 49.6 cm.    Find the magnification for the object at distance 24.8 cm. Find the magnification for the object at distance 12.4 cm.
A converging lens has a focal length of 93.0 cm. Locate the images for the following...
A converging lens has a focal length of 93.0 cm. Locate the images for the following object distances, if they exist. Find the magnification. (Enter 0 in the q and M fields if no image exists.) (a)    93.0 cm q =  cm M = Select all that apply to part (a). real virtual upright inverted no image (b)    11.6 cm q =  cm M = Select all that apply to part (b). real virtual upright inverted no image (c)    837 cm q =  cm M =...
A converging lens has a focal length of 87.0 cm. Locate the images for the following...
A converging lens has a focal length of 87.0 cm. Locate the images for the following object distances, if they exist. Find the magnification. (Enter 0 in the q and M fields if no image exists.) (a)    87.0 cm q = ______ cm M = _________ Select all that apply to part (a). a) real b)virtual c)upright d)inverted e)no image (b)    24.9 cm q =______ cm M = _____ Select all that apply to part (b). a) real b)virtual c)upright d)inverted e)no...
A diverging lens has radius of focal length f = –10.0 cm. An object is placed...
A diverging lens has radius of focal length f = –10.0 cm. An object is placed a certain distance dO from the mirror along its principal axis. For each value of dO in the table, fill in (i) the distance dI from the lens to the image; (ii) the lateral magnification m of the image; (iii) whether the image is real or virtual; (iv) whether the image is on the same side of the lens as the object or the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT