Question

Two small nonconducting spheres have a total charge of Q = Q1+ Q2 = 95.0 μC,...

Two small nonconducting spheres have a total charge of Q = Q1+ Q2 = 95.0 μC, Q1<Q2. When placed 32.0 cm apart, the force each exerts on the other is 12.5 N and is repulsive.

a) What is the charge Q1?

b) What is the charge Q2?

c) What would Q1 be if the force were attractive?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
SHOW ALL WORK Two small nonconducting spheres have a total charge of 95.0 μC . A)...
SHOW ALL WORK Two small nonconducting spheres have a total charge of 95.0 μC . A) When placed 1.16 m apart, the force each exerts on the other is 10.4 N and is repulsive. What is the charge on each? B)What if the force were attractive?
5. Two identical metal spheres are placed 15.0 cm apart. A charge of 6.00 µC is...
5. Two identical metal spheres are placed 15.0 cm apart. A charge of 6.00 µC is placed on one sphere while a charge of −2.00 µC is placed upon the other. What is the force on each sphere? If the two spheres are brought together and touched and then separated to their original separation, what will be the force on each sphere? Answer: F12 =4.80 N attractive     q = 2.00 μC           F12 = 1.60 N repulsive 7. Three charges q1...
A total charge of 7.50 × 10−6 C is distributed on two different small metal spheres....
A total charge of 7.50 × 10−6 C is distributed on two different small metal spheres. When the spheres are 6.30 cm apart, they each feel a repulsive force of 21.4 N. What is the charge on each sphere?
Two point charges Q1 and Q2 are 2.30 m apart, and their total charge is 15.4...
Two point charges Q1 and Q2 are 2.30 m apart, and their total charge is 15.4 μC. If the force of repulsion between them is 0.0990 N, what are magnitudes of the two charges? Enter the smaller charge in the first box. Q1 = Q2 = If one charge attracts the other with a force of 0.0763N, what are the magnitudes of the two charges if their total charge is also 15.4 μC? The charges are at a distance of...
Two small identical conducting spheres are placed with their centers 0.65 m apart. One is given...
Two small identical conducting spheres are placed with their centers 0.65 m apart. One is given a charge of 12 ? 10?9 C, the other a charge of ?17 ? 10?9 C. (a) Find the electrostatic force exerted on one sphere by the other. magnitude N direction ---Select--- attractive repulsive (b) The spheres are connected by a conducting wire. Find the electrostatic force between the two after equilibrium is reached, where both spheres have the same charge. magnitude N direction...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 32.0 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 32.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0750 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.100 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
Two charges, q1 = 5 μC and q2 = 7 μC, are separated by 25 cm....
Two charges, q1 = 5 μC and q2 = 7 μC, are separated by 25 cm. Where should a third charge be placed on the line between them such that the resultant force on it will be zero? Does it matter if the third charge is positive or negative?
There are two identical, positively charged conducting spheres fixed in space. The spheres are 49.0 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 49.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0705 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
Two identical small metal spheres initially carry charges 푞1and 푞2. When they’re 1.0 m apart, they...
Two identical small metal spheres initially carry charges 푞1and 푞2. When they’re 1.0 m apart, they experience a 2.5-N attractive force. Then they’re brought together so charge moves from one to the other until they have the same net charge. They’re again placed 1.0 m apart, and now they repel with a 2.5-N force. What were the original charges 푞1and 푞2?
There are two identical, positively charged conducting spheres fixed in space. The spheres are 47.8 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 47.8 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0720 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...