Question

Suppose that, at t=6.00×10−4 s, the space coordinates of a particle are x=255 m, y=35.0 m,...

Suppose that, at t=6.00×10−4 s, the space coordinates of a particle are x=255 m, y=35.0 m, and z=35.0 m according to coordinate system S. If reference frame S′ moves at speed 1.41×105 m/s in the +x-direction relative to frame S, compute the corresponding coordinate values as measured in frame.S′. The reference frames start together, with their origins coincident at t=0.

x' = ??? m

y' = ??? m

z' = ??? m

Homework Answers

Answer #1

tao At Telative vdeety Both rame Concide 2 elo city od frame s' Agtw 6xjoec, alistmee befneen two rame time 84.6 m hen rame s z-Cuondinate XCo dinates frame uveaf S inae in drame (n 3, 2)25 25, 3) Ivtn NBw, ame s(2) x4 6 25584-6 399.6 y2y 35 Mi

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider two events. Give an example of coordinates x,y,z,t and x’,y’,z’,t’ and relative velocity of the...
Consider two events. Give an example of coordinates x,y,z,t and x’,y’,z’,t’ and relative velocity of the two frames u, such that event 1 occurs first in the unprimed reference frame, but event 2 occurs first in the primed reference frame. The example must use special relativity and show it works using numbers not just concept
A +6.00 μC point charge is moving at a constant 9.00 ×10^6m/s in the +y-direction, relative...
A +6.00 μC point charge is moving at a constant 9.00 ×10^6m/s in the +y-direction, relative to a reference frame. At the instant when the point charge is at the origin of this reference frame, what is the magnetic-field vector B⃗ it produces at the following points. Bx, By, Bz? A) x=0.500m,y=0, z=0 B) x=0, y= -0.500m, z=0 C) x=0, y=0, z=+0.500m D) x=0, y= -0.500m, z=+0.500m
The position ? of a particle moving in space from (t=0 to 3.00 s) is given...
The position ? of a particle moving in space from (t=0 to 3.00 s) is given by ? = (6.00?^2− 2.00t^3 )i+ (3.00? − ?^2 )j+ (7.00?)? in meters and t in seconds. Calculate (for t = 1.57 s): a. The magnitude and direction of the velocity (relative to +x). b. The magnitude and direction of the acceleration (relative to +y). c. The angle between the velocity and the acceleration vector. d. The average velocity from (t=0 to 3.00 s)....
A rectangle with coordinate system with axes x,y,z is rotating relative to an inertial frame with...
A rectangle with coordinate system with axes x,y,z is rotating relative to an inertial frame with constant angular velocity w about the z-axis. A particle of mass m moves under a force whose potential is V(x,y,z). Set up the Lagrange equations of motion in the coordinate system x,y,z. Show that their equations are the same as those in a fixed coordinate system acted on by the force -grad(V) and a force derivable from a velocity dependent potential U. Find U.
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a...
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a region of uniform electric and magnetic fields. The magnetic field is B=4.00 T in the +z-direction. The electric field is also in the +z-direction and has magnitude E=60.0 N/C. At time t = 0 the particle is on the y-axis at y=+1.00 m and has velocity v = 30.0 m/s in the +x-direction. Neglect gravity. What are the x-, y-, and z-coordinates of the...
An electron with a velocity given by v⃗ =(1.6×105 m/s )x^+(6700 m/s )y^ moves through a...
An electron with a velocity given by v⃗ =(1.6×105 m/s )x^+(6700 m/s )y^ moves through a region of space with a magnetic field B⃗ ==(0.26 T )x^−(0.10 T )z^ and an electric field E⃗ =(220 N/C )x^. Using cross products, find the magnitude of the net force acting on the electron. (Cross products are discussed in Appendix A.) Express your answer using two significant figures.
The x and y components of the velocity of a particle are Vx=(2t + 4)ft/s &...
The x and y components of the velocity of a particle are Vx=(2t + 4)ft/s & Vy=(8/y)ft/s. Initially, the particle if found at coordinates x=1 and y=0. Determine the position, magnitude of velocity, and magnitude of the acceleration of the particle when t = 2s
A -4.60 μC charge is moving at a constant speed of 6.70×105 m/s in the +x−direction...
A -4.60 μC charge is moving at a constant speed of 6.70×105 m/s in the +x−direction relative to a reference frame. At the instant when the point charge is at the origin, what is the magnetic-field vector it produces at the following points. C) x=0.500m, y=0.500m, z=0
A -4.80 μC charge is moving at a constant speed of 6.80×105 m/s in the +x−direction...
A -4.80 μC charge is moving at a constant speed of 6.80×105 m/s in the +x−direction relative to a reference frame. At the instant when the point charge is at the origin, what is the magnetic-field vector it produces at the following points. Part A x=0.500m,y=0, z=0 Enter your answers numerically separated by commas. Part B x=0, y=0.500m, z=0 Part C x=0.500m, y=0.500m, z=0 Enter your answers numerically separated by commas. Part D x=0, y=0, z=0.500m
A -5.00 μC charge is moving at a constant speed of 6.90×105 m/s in the +x−direction...
A -5.00 μC charge is moving at a constant speed of 6.90×105 m/s in the +x−direction relative to a reference frame. At the instant when the point charge is at the origin, what is the magnetic-field vector it produces at the following points. Part A x=0.500m,y=0, z=0 Enter your answers numerically separated by commas. Bx,By,Bz = nothing   T   SubmitRequest Answer Part B x=0, y=0.500m, z=0 Enter your answers numerically separated by commas. Bx,By,Bz = nothing   T   SubmitRequest Answer Part C...