Question

An ice skater is preparing for a jump with turns and has his arms extended. His...

An ice skater is preparing for a jump with turns and has his arms extended. His moment of inertia is 2.1 kg · m2 while his arms are extended, and he is spinning at 0.6 rev/s. If he launches himself into the air at 8.9 m/s at an angle of 45° with respect to the ice, how many revolutions can he execute while airborne if his moment of inertia in the air is 0.7 kg · m2?

Homework Answers

Answer #1

the two complete revolutions, he execute

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
  An ice skater is spinning at 6.6 rev/s and has a moment of inertia of 0.52...
  An ice skater is spinning at 6.6 rev/s and has a moment of inertia of 0.52 kg ⋅ m2. a.)  Calculate the angular momentum, in kilogram meters squared per second, of the ice skater spinning at 6.6 rev/s. b.)  He reduces his rate of rotation by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kilogram meters squared) if his rate of rotation decreases to 1.5 rev/s. c.) Suppose instead he keeps his...
An ice skater with a moment of inertia of 0.390 kg*m2 is spinning at 6.00 rev/s...
An ice skater with a moment of inertia of 0.390 kg*m2 is spinning at 6.00 rev/s a. What is the angular velocity of the ice skater in rad/s? b. What is the angular momentum of the ice skater at this angular velocity c. He reduces his rate of spin (angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia if his angular velocity drops to 1.70 rev/s d. Suppose instead...
The moment of inertia of an ice skater is 0.400 kg·m2 when he is spinning at...
The moment of inertia of an ice skater is 0.400 kg·m2 when he is spinning at 6.00 rev/s. (a) He reduces his angular velocity by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia if his angular velocity decreases to 1.25 rev/s. (b) Suppose instead he keeps his arms in and allows friction on the ice to slow him to 3.00 rev/s What average torque was exerted if this takes 15.0 s?
An ice-skater starts to spin while standing upright with her arms fully extended outward. In each...
An ice-skater starts to spin while standing upright with her arms fully extended outward. In each of her hands she holds a 1.0-kg dumbbell. Model her body as a 50-kg, 0.20-m–radius cylinder, her arms as uniform 2.0-kg, 0.75-m–long, 0.10-m diameter rods, and the dumbells as point masses. She then draws her arms downward, until they are by her sides, 0.20 m from her axis of rotation. (a) What is her initial moment of inertia? (b) What is her final moment...
a) Calculate the angular momentum (in kg·m2/s) of an ice skater spinning at 6.00 rev/s given...
a) Calculate the angular momentum (in kg·m2/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.450 kg·m2. Answer to 3 significant figures. (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg·m2) if his angular velocity drops to 1.35 rev/s. Answer to 3 significant figures. c) Suppose instead he keeps his arms in and...
a) Calculate the angular momentum (in kg·m2/s) of an ice skater spinning at 6.00 rev/s given...
a) Calculate the angular momentum (in kg·m2/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.450 kg·m2. Answer to 3 significant figures. (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg·m2) if his angular velocity drops to 1.35 rev/s. Answer to 3 significant figures. c) Suppose instead he keeps his arms in and...
The outstretched hands and arms of a figure skater preparing for a spin can be considered...
The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center (Figure 1). When his hands and arms are brought in and wrapped around his body to execute the spin, the hands and arms can be considered a thin-walled hollow cylinder. His hands and arms have a combined mass 8.0 kg . When outstretched, they span 1.7 m ; when wrapped, they form a thin-walled...
The outstretched hands and arms of a figure skater preparing for a spin can be considered...
The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center (Figure 1). When his hands and arms are brought in and wrapped around his body to execute the spin, the hands and arms can be considered a thin-walled hollow cylinder. His hands and arms have a combined mass 9.0 kg . When outstretched, they span 1.6 m ; when wrapped, they form a cylinder...
An ice skater quickly extends his arms when he turns on himself. Will its kinetic energy...
An ice skater quickly extends his arms when he turns on himself. Will its kinetic energy be conserved? Will your mechanical energy be conserved? Will its angular momentum be conserved? (Disregard the friction in the time interval that two it takes to extend the arms.) If any of these magnitudes is not preserved tell whether it increases or decreases.
A figure skater is spinning slowly with arms outstretched. He brings his arms in close to...
A figure skater is spinning slowly with arms outstretched. He brings his arms in close to his body and his angular velocity changes by a factor of 2. By what factor does his moment of inertia change, and why?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT