Question

A student holds a laser that emits light of wavelength 632.6 nm. The laser beam passes...

A student holds a laser that emits light of wavelength 632.6 nm. The laser beam passes though a pair of slits separated by 0.500 mm, in a glass plate attached to the front of the laser. The beam then falls perpendicularly on a screen, creating an interference pattern on it. The student begins to walk directly toward the screen at 3.00 m/s. The central maximum on the screen is stationary. Find the speed of the 50th-order maxima on the screen. m/s

Homework Answers

Answer #1

Then speed is , v = 3m/s

d=0.500 mm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A laser emits a beam of light with a wavelength of 650nm which is incident upon...
A laser emits a beam of light with a wavelength of 650nm which is incident upon a double slit and produces an interference pattern 10 m away. The width of each slit is 0.1 mm and the separation of the slits is 0.5 mm. Draw in detail (i.e. to scale with a ruler) the resulting pattern you expect from -13cm to +13cm around the central maxima. Show the interference bright and dark fringes/bands that you would see, and their positions,...
A physics student demonstrates Young's double-slit experiment using 632.8 nm light from a HeNe laser. The...
A physics student demonstrates Young's double-slit experiment using 632.8 nm light from a HeNe laser. The laser light passes through two narrowly separated slits that have a spacing of d. The light produces an interference pattern on a screen that is 4.20 meters in front of the slits. The spacing between the m=2 and m=3 maxima as seen on the screen is 12.0 cm. Determine the spacing between the slits. For the situation described above, determine the phase difference between...
Light from a laser with a wavelength of 5.60 ✕ 102 nm is incident on (and...
Light from a laser with a wavelength of 5.60 ✕ 102 nm is incident on (and perpendicular to) a pair of slits separated by 0.320 mm. An interference pattern is formed on a screen 1.90 m from the slits. Find the distance (in mm) between the first and second dark fringes of the interference pattern (in mm)?
A laser beam with a wavelength of 490 nm passes through a double-slits with a separation...
A laser beam with a wavelength of 490 nm passes through a double-slits with a separation of 0.04 mm and falls on a screen 60 cm behind the slits. (a) Find the positions of the 1 st and 2nd order bright fringes respected to the center on the screen. (b) Find the position of the 1 st -order dark fringe respected to the center on the screen.
A parallel beam of light from a He-Ne laser, with a wavelength 633 nm, falls on...
A parallel beam of light from a He-Ne laser, with a wavelength 633 nm, falls on two very narrow slits 0.070 mm apart. Part A How far apart are the fringes in the center of the pattern on a screen 4.1 m away?
A parallel beam of light from a He-Ne laser, with a wavelength 633 nm, falls on...
A parallel beam of light from a He-Ne laser, with a wavelength 633 nm, falls on two very narrow slits 0.066 mm apart. Part A How far apart are the fringes in the center of the pattern on a screen 4.1 m away? Express your answer to two significant figures and include the appropriate units.
Laser light of an unknown wavelength falls incident on a pair of slits separated by 25.0...
Laser light of an unknown wavelength falls incident on a pair of slits separated by 25.0 µm. This produces an interference pattern on a screen 1.80 m away with the first-order bright fringe being 39.7 mm from the center of the central maximum. What is the wavelength of the laser light?
You are given a visible laser of wavelength λ to study interferences of light in the...
You are given a visible laser of wavelength λ to study interferences of light in the lab. Consider the 5 situations below. Treat each question independently 1.In air, you place a screen with two slits, separated by 0.86 mm, in front of the laser of wavelength 507.9 nm. You know that you will see an interference pattern if you place an observation screen some distance away. Determine what the distance between the plane of the fringes and the observation screen...
5. Light of wavelength 600 nm passes through two slits 0.3 mm apart and forms an...
5. Light of wavelength 600 nm passes through two slits 0.3 mm apart and forms an interference pattern on a screen 2 m away. Calculate the angular width of an interference maximum (in degrees), and calculate the width of a maximum on the screen (in cm).
3. Red light with wavelength 680 nm passes through a pair of slits with a separation...
3. Red light with wavelength 680 nm passes through a pair of slits with a separation of 61 microns. 3a). Find the scattering angle corresponding to the first bright fringe. 3b). If the diffraction pattern is projected onto a screen a distance L = 11 meters away, what is the separation g on the screen between the unscattered beam and that first bright fringe?