Question

A block with mass m1 = 0.450 kg is released from rest on a frictionless track...

A block with mass m1 = 0.450 kg is released from rest on a frictionless track at a distance h1 = 2.25 m above the top of a table. It then collides elastically with an object having mass m2 = 0.900 kg that is initially at rest on the table, as shown in the figure below.

(a) Determine the velocities of the two objects just after the collision. (Assume the positive direction is to the right. Indicate the direction with the signs of your answers.)

v1 =   m/s
v2 =

(b) How high up the track does the 0.450-kg object travel back after the collision?

(c) How far away from the bottom of the table does the 0.900-kg object land, given that the height of the table is h2 = 1.85 m?

(d) How far away from the bottom of the table does the 0.450-kg object eventually land?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A m1 = 0.600 kg block is released from rest at the top of a frictionless...
A m1 = 0.600 kg block is released from rest at the top of a frictionless track h1 = 2.95 m above the top of a table. It then collides elastically with a 1.00 kg block that is initially at rest on the table, as shown in Figure P6.57. Figure P6.57 (a) Determine the velocities of the two blocks just after the collision. (Assume the positive direction is to the right. Indicate the direction with the signs of your answers.)...
A 525 kg mass is released from rest on the right side of a track at...
A 525 kg mass is released from rest on the right side of a track at a height 3.5 m above a horizontal surface at the foot of the slope. It collides elastically with a 525 kg mass which is initially at rest on the horizontal surface, as shown in the figure. The struck 525 kg mass moves to the left, then slides up the left side of the track. How high above the horizontal surface will the struck 525...
A block of mass m1 = 2.6 kg initially moving to the right with a speed...
A block of mass m1 = 2.6 kg initially moving to the right with a speed of 4.5 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 5.6 kg initially moving to the left with a speed of 2.9m/s. The spring constant is 504N/m. Now, What if m1 is initially moving at 3.4 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. x...
A block of mass m1 = 1.90 kg initially moving to the right with a speed...
A block of mass m1 = 1.90 kg initially moving to the right with a speed of 4.6 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 4.8 kg initially moving to the left with a speed of 1.1 m/s.The spring constant is 519 N/m. What if m1 is initially moving at 3.4 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. x...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with speed v1 = 13.0 m/s . It collides with block 2, of mass m2 = 39.0 kg , which was initially at rest. The blocks stick together after the collision. Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the two-block system's...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 59.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...
Block 1, of mass m1 = 5.30 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 5.30 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mass m2 = 51.0 kg , which was initially at rest. The blocks stick together after the collision. A.Find the magnitude pi of the total initial momentum of the two-block system. B.Find vf, the magnitude of the final velocity of the two-block system. C. What is the change ΔK=Kfinal−Kinitial in the two-block...
A block of mass m1 = 1.2 kg initially moving to the right with a speed...
A block of mass m1 = 1.2 kg initially moving to the right with a speed of 4.2 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 2.8 kg initially moving to the left with a speed of 1.0 m/s as shown in figure (a). The spring constant is 535N/m. What if m1 is initially moving at 2.6 m/s while m2 is initially at rest?(a) Find the maximum spring compression...
Block 1, of mass m1 = 9.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 9.70 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 55.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Part A: Find the magnitude pi of the total initial momentum of the two-block system. Part B: Find vf, the magnitude of the final velocity of the two-block system. Part C: What...
8) A 0.280 kg glider moving at a 0.900 ?̂ m/s on horizontal track collides elastically...
8) A 0.280 kg glider moving at a 0.900 ?̂ m/s on horizontal track collides elastically with a second glider initially at rest. After the collision the velocity of the first glider is a 0.240 ?̂ m/s. What is the mass of the second glider?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT