Question

A clay ball with a mass of 0.35 kg has an initial speed of 4.2 m/s...

A clay ball with a mass of 0.35 kg has an initial speed of 4.2 m/s traveling north. It strikes a 1.25 kg clay ball that is traveling towards the other ball at an initial speed of 1.5 m/s. The two ball stick together. What is their final velocity?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A ball of mass 2 kg is traveling towards you at 15 m/s. You are at...
A ball of mass 2 kg is traveling towards you at 15 m/s. You are at rest and have a mass of 75 kg. Assuming you catch the ball, what is your final velocity? Assuming the ball bounces off you and travels in the opposite direction with a velocity of 12 m/s, what is your velocity? A car of 1200 kg travels east at 24 m/s while a truck of 2200 kg travels north at 19 m/s. They collide and...
Two balls of clay are shot at each other with an initial angle of 110 degrees...
Two balls of clay are shot at each other with an initial angle of 110 degrees between them. One ball has a mass of 30 g and a speed of 1.5 m/s, and the other ball has a mass of 40 g and a speed of 1.2 m/s. When the balls collide, they stick together. What is the velocity (speed and direction) of the 70-g ball after the collision?
Ball A has a mass of 100 kg; it is traveling to the right at 6.2...
Ball A has a mass of 100 kg; it is traveling to the right at 6.2 m/s. Ball B has a mass of 120 kg; it is traveling to the left at 4.7 m/s.(a) Assume an inelastic collision (they stick together). Determine velocity at which the two move off together. Give speed and direction. Pay attention to the + and – signs.(b) Assume they have a perfectly elastic collision. Determine the speeds and directions of each of the balls.
A 40.0 g ball of clay traveling east at 9.00 m/s collides and sticks together with...
A 40.0 g ball of clay traveling east at 9.00 m/s collides and sticks together with a 20.0 g ball of clay traveling north at 9.00 m/s . What is the speed of the resulting ball of clay? What is the direction of the resulting ball of clay?
16. A ball traveling with an initial momentum of 4 kg-m/s bounces off a wall and...
16. A ball traveling with an initial momentum of 4 kg-m/s bounces off a wall and comes back in the opposite direction with a momentum of -2 kg-m/s. What is the change in momentum of the ball? 17. A 5000 kg truck traveling with a velocity of 10 m/s due north collides head-on with a 1500 kg car traveling with a velocity of 20 m/s due south. The two vehicles stick together after the collision. What is the total momentum...
Collision Between Ball and Stick On a frictionless table, a 0.62 kg glob of clay strikes...
Collision Between Ball and Stick On a frictionless table, a 0.62 kg glob of clay strikes a uniform 1.12 kg bar perpendicularly at a point 0.21 m from the center of the bar and sticks to it. If the bar is 1.34 m long and the clay is moving at 7.50 m/s before striking the bar, what is the final speed of the center of mass? 2.67 m/s ¡Correcto! Su recibo es 160-2745 Intentos Anteriores At what angular speed does...
A lump of clay with a mass of 0.0050 kg traveling at 11.5 m/s collides at...
A lump of clay with a mass of 0.0050 kg traveling at 11.5 m/s collides at right angles with a second lump of clay with a mass of 0.00070 kg traveling at 9.5 m/s. After the collision, what is the velocity of the combined lump of clay?
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides with another ball with mass m = 2.5 kg which is initially stationary. There is no other force such as gravity acting on the two balls. After the collision, both balls move at angle θ=30 degrees relative to initial direction of motion of the ball with mass M = 5 kg. a) What are the speeds of the two balls after the collision? b)...
A spherical bowling ball with mass m = 4.2 kg and radius R = 0.1 m...
A spherical bowling ball with mass m = 4.2 kg and radius R = 0.1 m is thrown down the lane with an initial speed of v = 8.1 m/s. The coefficient of kinetic friction between the sliding ball and the ground is μ = 0.28. Once the ball begins to roll without slipping it moves with a constant velocity down the lane. 3) How long does it take the bowling ball to begin rolling without slipping? 4) How far...
Starting with an initial speed of 3.77 m/s at a height of 0.126 m, a 1.25-kg...
Starting with an initial speed of 3.77 m/s at a height of 0.126 m, a 1.25-kg ball swings downward and strikes a 5.95-kg ball that is at rest, as the drawing shows. (a) Using the principle of conservation of mechanical energy, find the speed of the 1.25-kg ball just before impact. (b) Assuming that the collision is elastic, find the velocity (magnitude and direction) of the 1.25-kg ball just after the collision. (c) Assuming that the collision is elastic, find...