Question

A 5.20 μF capacitor that is initially uncharged is connected in series with a 5.20 kΩ...

A 5.20 μF capacitor that is initially uncharged is connected in series with a 5.20 kΩ resistor and an emf source with E= 265 V negligible internal resistance.

1) Just after the circuit is completed, what is the voltage drop across the resistor?

2)Just after the circuit is completed, what is the charge on the capacitor?

3) Just after the circuit is completed, what is the current through the resistor?

Homework Answers

Answer #1

1) just after the circuit is completed

the current in the circuit is maximum , all the potential drops across the capacitor

voltage drop across the resistor = E

voltage drop across the resistor = 265 V

the voltage drop across the resistor is 265 V

2)

when the circuit is completed

the capacitor is not charged at all

charge on the capacitor is Zero

3)

current in resistor = E/R

current in resistor = 265/5.2

current in resistor = 51 mA

the current in the resistor is 51 mA or 0.051 A

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.02 μF capacitor that is initially uncharged is connected in series with a 8.00 kΩ...
A 1.02 μF capacitor that is initially uncharged is connected in series with a 8.00 kΩ resistor and an emf source with 77.2 V and negligible internal resistance. The circuit is completed at t = 0. Part A Just after the circuit is completed, what is the rate at which electrical energy is being dissipated in the resistor? Express your answer with the appropriate units. Part B At what value of tt is the rate at which electrical energy is...
An uncharged 3.0-μF capacitor is connected in series with a 30-kΩ resistor, an ideal 6.7-V battery,...
An uncharged 3.0-μF capacitor is connected in series with a 30-kΩ resistor, an ideal 6.7-V battery, and an open switch. What is the voltage across the capacitor 21 ms after closing the switch? 15.2 V 6.70 V 12.0 V 1.39 V
An uncharged capacitor and a resistor are connected in series to a source of EMF. If...
An uncharged capacitor and a resistor are connected in series to a source of EMF. If ε = 4.23 V, C = 17.6 μF, and R = 138 Ω, calculate the time constant τ of the circuit. Calculate the maximum charge on the capacitor. Calculate the charge on the capacitor after one time constant.
A 48 μF capacitor is connected in series with a 32 kΩ resistor and a 6.0...
A 48 μF capacitor is connected in series with a 32 kΩ resistor and a 6.0 V DC source. (a) If the capacitor is initially uncharged, how long will it take the capacitor to charge to within 0.50% of maximum? (b) If the capacitor is replaced with an 96-mH inductor and the inductor has no current flowing through it initially, how long will it take the current through the inductor to be within 0.50% of maximum?
1A) A circuit consists of a 12.0 V battery, a 100 kΩ resistor, a 20.0 μF...
1A) A circuit consists of a 12.0 V battery, a 100 kΩ resistor, a 20.0 μF capacitor in series with a switch which is initially in the open position. The capacitor is initially uncharged. Calculate the charge on the capacitor 6.00 seconds after the switch is closed. Calculate the current through the resistor 6.00 seconds after the switch is closed. 1B) A 20 μF capacitor has previously charged up to contain a total charge of Q=100 μC on it. The...
An initially uncharged 3.31×10−63.31×10−6 F capacitor and a 63906390 Ω resistor are connected in series to...
An initially uncharged 3.31×10−63.31×10−6 F capacitor and a 63906390 Ω resistor are connected in series to a 1.501.50 V battery that has negligible internal resistance. What is the initial current in Angstrom Calculate the circuit's time constant τ How much time t must elapse from the closing of the circuit for the current to decrease to 2.512.51% of its initial value? 2. A 659 μF capacitor is discharged through a resistor, whereby its potential difference decreases from its initial value...
An initially uncharged 3.97×10−6 F capacitor and a 7990 Ω resistor are connected in series to...
An initially uncharged 3.97×10−6 F capacitor and a 7990 Ω resistor are connected in series to a 1.50 V battery that has negligible internal resistance. What is the initial current ?0 in the circuit? Calculate the circuit's time constant ? . How much time ? must elapse from the closing of the circuit for the current to decrease to 2.05% of its initial value?
A 3.0M? resistor is connected in series with an initially uncharged 0.27?F capacitor. This arrangement is...
A 3.0M? resistor is connected in series with an initially uncharged 0.27?F capacitor. This arrangement is then connected across four 1.5-V batteries (also in series). A) What is the maximum current in the circuit? B) When does it occur? (sec) C) What percentage of the maximum current is in the circuit after 1.4s D) What is the maximum charge on the capacitor? E) When does it occur? (sec) F) What percentage of the maximum charge is on the capacitor after...
1. A capacitor charging circuit consists of a battery, an uncharged 20 μF capacitor, and a...
1. A capacitor charging circuit consists of a battery, an uncharged 20 μF capacitor, and a 4.8 kΩ resistor. At t = 0 s the switch is closed; 0.15 s later, the current is 0.62 mA . What is the battery's emf? 2. A 10 μF capacitor initially charged to 30 μC is discharged through a 1.2 kΩ resistor. How long does it take to reduce the capacitor's charge to 10 μC?
A 10 μF capacitor in series with a 10 kΩ resistor is connected across a 500...
A 10 μF capacitor in series with a 10 kΩ resistor is connected across a 500 V DC supply. The fully charged capacitor is disconnected from the supply and discharged by connecting a 1000 Ω resistor across its terminals. Calculate: (a) the initial value of the charging current; (b) the initial value of the discharge current; and (c) the amount of heat, in joules, dissipated in the 1000 Ω resistor.