Question

A square with sides of length L has a point charge at each of its four...

A square with sides of length L has a point charge at each of its four corners. Two corners that are diagonally opposite have charges equal to 3.20 μC the other two diagonal corners have charges Q. Find the magnitude and sign of the charges Q such that each of the 3.20 μC charges experiences zero net force.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Four point charges are located at the corners of a square, 2.0 m by 2.0 m....
Four point charges are located at the corners of a square, 2.0 m by 2.0 m. On each of two diagonally opposite corners are 2.0 μC charges. On each of the other two corners are -2.0 μC charges. What is the direction and magnitude of the force on each charge?
Identical point charges of +1.2 µC are fixed to three of the four corners of a...
Identical point charges of +1.2 µC are fixed to three of the four corners of a square. What is the magnitude |q| of the negative point charge that must be fixed to the fourth corner, so that the charge at the diagonally opposite corner experiences a net force of zero? |q| = Number _______ Units _____
A square with sides of length 0.4 meters has 8 charges on it. Four charge of...
A square with sides of length 0.4 meters has 8 charges on it. Four charge of +q, +q, +q, and -q (same amount of charge for three and one has an opposite sign) are placed in the corners and four charges of twice the magnitude of -2q, -2q, -2q, and +2q are placed halfway in the middle of the sides. Here q = 9 micro-coulombs. (In other words, -q = -9 micro-coulombs and +2q is twice 9 micro-coulombs.) A ninth...
Four point charges are located at the corners of a square. Each charge has magnitude 3.50...
Four point charges are located at the corners of a square. Each charge has magnitude 3.50 nC and the square has sides of length 3.20 cm. Find the magnitude of the electric field (in N/C) at the center of the square if all of the charges are positive and three of the charges are positive and one is negative. (a) all the charges are positive N/C (b) three of the charges are positive and one is negative N/C
Four point charges with magnitude 5.0 microcoulumbs are placed at the corners of a square that...
Four point charges with magnitude 5.0 microcoulumbs are placed at the corners of a square that is 30.0 cm on a side. Two charges, diagonally opposite each other, are positive, and the other two are negative. What are the magnitude and the direction of the force on one of the charges?
Four point charges are in the corners of side length a, each of which has charge...
Four point charges are in the corners of side length a, each of which has charge q. Determine the force in the center of the square in terms of q, a, and k.
Four point charges are located at the corners of a square. Each charge has magnitude 1.70...
Four point charges are located at the corners of a square. Each charge has magnitude 1.70 nC and the square has sides of length 2.40 cm. Find the magnitude of the electric field (in N/C) at the center of the square if all of the charges are positive and three of the charges are positive and one is negative. HINT (a) all the charges are positive N/C (b) three of the charges are positive and one is negative
At each of the four corners of a square with side length a, there is a...
At each of the four corners of a square with side length a, there is a charge +q. How many other charges are exerting electric forces on the charge at the lower-right corner? The square is placed so that its sides are either parallel or perpendicular to the x-axis.
Four point charges each having charge Q are located at the corners of a square having...
Four point charges each having charge Q are located at the corners of a square having sides of length a. (a) Find a symbolic expression for the total electric potential at the center of the square due to the four charges (Use any variable or symbol stated above along with the following as necessary: ke.) Vtotal =      (b) Find a symbolic expression for the work required to bring a fifth charge p from infinity to the center of the...
There are four charges, each with a magnitude of 1.91 μC. Two are positive and two...
There are four charges, each with a magnitude of 1.91 μC. Two are positive and two are negative. The charges are fixed to the corners of a 0.266-m square, one to a corner, in such a way that the net force on any charge is directed toward the center of the square. Calculate the magnitude of the net electrostatic force experienced by any charge.