Question

A thin layer of liquid methylene iodide (n = 1.756) is sandwiched between two flat, parallel...

A thin layer of liquid methylene iodide (n = 1.756) is sandwiched between two flat, parallel plates of glass (n = 1.50). What must be the thickness of the liquid layer if normally incident light with λ = 581 nm in air is to be strongly reflected?

Homework Answers

Answer #1

There is a phase shift of ½λ for rays reflected off the top of the liquid layer (as liquid n > glass)
There is no phase shift with reflection off the bottom of the layer (as glass n < liquid)

Reflected rays off the top will combine constructively when alongside waves having a path difference of ½ wave (or 1½, 2½ ....) caused by travelling through the liquid.

The minimum thickness (t) for a path diff. of ½ wave is given by
2 t = ½ λ' .. (λ' = wavelength in liquid = λair / n)

t = ¼( λ / n) .... ... (0.25)*(581E-9 m) / (1.756)

t = 82.7E-9 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin film of alcohol (n=1.36) lies on a flat glass plate (n=1.51). When monochromatic light,...
A thin film of alcohol (n=1.36) lies on a flat glass plate (n=1.51). When monochromatic light, whose wavelength can be changed, is incident normally, the reflected light is a minimum for λ=512 nm and a maximum for λ= 650 nm. What is the minimum thickness of the film? (Answer: 471 nm)
A glass plate (n = 1.59) is covered with a thin, uniform layer of oil (n...
A glass plate (n = 1.59) is covered with a thin, uniform layer of oil (n = 1.25). A light beam of variable wavelength from air is incident normally on the oil surface. Observation of the reflected beam shows constructiveinterference at 630 nm. Determine the minimum non-zero thickness of the oil film. (in nm)
A glass plate (n = 1.60) is covered with a thin, uniform layer of oil (n...
A glass plate (n = 1.60) is covered with a thin, uniform layer of oil (n = 1.27). A light beam of variable wavelength from air is incident normally on the oil surface. Observation of the reflected beam shows constructive interference at 677 nm. Determine the minimum non-zero thickness of the oil film.
A thin film of alcohol (n = 36) lies on a flat glass plate (n =...
A thin film of alcohol (n = 36) lies on a flat glass plate (n = 51). Light whose wavelength can be changed is incident normally on the alcohol. The reflected light is a minimum for l = 512 nm and maximum for l = 640 nm. What is the minimum thickness of the film? 235 nm 94 nm 1412 nm None of the above
Two identical horizontal sheets of glass have a thin film of air of thickness t between...
Two identical horizontal sheets of glass have a thin film of air of thickness t between them. The glass has refractive index 1.40. The thickness t of the air layer can be varied. Light with wavelength λ in air is at normal incidence onto the top of the air film. There is constructive interference between the light reflected at the top and bottom surfaces of the air film when its thickness is 700 nm. For the same wavelength of light...
A) How thick (minimum) should the air layer be between two flat glass surfaces if the...
A) How thick (minimum) should the air layer be between two flat glass surfaces if the glass is to appear bright when 500 nm light is incident normally? (tmin, In meters) B) What if the glass is to appear dark? (tmin, in meters)
A thin film in air is made by putting a thin layer of acetone (n =...
A thin film in air is made by putting a thin layer of acetone (n = 1.25) on a layer of water (n = 1.33). When visible light (400nm – 700 nm) shines normally on the film an observed from above, the bright reflected light looks kind of “purplish” with red light of wavelength 650 nm mixed some blue giving it that appearance and “greenish” light of wavelength 520 nm is completely destroyed. Determine the thickness of the acetone film....
White light is shone on a very thin layer of mica (n = 1.57) that is...
White light is shone on a very thin layer of mica (n = 1.57) that is surrounded by air (n = 1.00) above the film and the film rests on a material with index n = 1.80. Above the layer of mica, interference maxima for two wavelengths (and no others in between) are seen; one blue wavelength of 480 nm, and one yellow wavelength of 560 nm. What is the thickness of the mica layer? If the thickness of the...
White light is shone on a very thin layer of mica (n = 1.57) that is...
White light is shone on a very thin layer of mica (n = 1.57) that is surrounded by air (n = 1.00) above the film and the film rests on a material with index n = 1.80. Above the layer of mica, interference maxima for two wavelengths (and no others in between) are seen; one blue wavelength of 480 nm, and one yellow wavelength of 560 nm. What is the thickness of the mica layer? If the thickness of the...
White light is shone on a very thin layer of glass (n = 1.5), and above...
White light is shone on a very thin layer of glass (n = 1.5), and above the glass layer, interference maxima for two wavelengths (and no other in between) are seen: one green wavelength of 550 nm, and one orange wavelength of 610 nm. What is the thickness of the glass layer? 1862 nm 1859 nm 1860 nm 1861 nm