Question

A rigid tank contains 65.5 g of chlorine gas (Cl2) at a temperature of 73 °C...

A rigid tank contains 65.5 g of chlorine gas (Cl2) at a temperature of 73 °C and an absolute pressure of 5.60 × 105 Pa. Later, the temperature of the tank has dropped to 33 °C and, due to a leak, the pressure has dropped to 3.50 × 105 Pa. How many grams of chlorine gas have leaked out of the tank? (The mass per mole of Cl2 is 70.9 g/mol.) Answer in grams. Please provide a detailed answer. Thank you!

Homework Answers

Answer #1


Given

   initial --


chlorine in the tank is at Temperature T1 = 73 °C = 346 k

           pressure P1 = 5.6*10^5 Pa

           number of moles n1 = 65.5/70.9 = 0.924

final
   Temperature T2 = 33 0C = 306 k,
   pressure P2 = 3.5*10^5 Pa


  
from ideal gas equation PV = nRT

   P1/P2 = n1 T1/n2T2 (V is constant)

   n2 = n1*T1*P2/(P1T2)

substituting the data

   n2 = (65.5/70.9)(346*3.5*10^5/5.6*10^5*306)
   n2 = 0.65287457249

molar massof chlorine is 70.9 g/mol, the mass , amount of the gas remained in the tank is

   0.65287457249*70.9 g = 46.29 g

the amount of chlrine leaked from tank is 65.5 g - 46.29 g = 19.21 g

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q&A A tank contains 12.1 g of chlorine gas (Cl2) at a temperature of 84 °C...
Q&A A tank contains 12.1 g of chlorine gas (Cl2) at a temperature of 84 °C and an absolute pressure of 5.40 × 105 Pa. The mass per mole of Cl2 is 70.9 g/mol. (a) Determine the volume of the tank. (b) Later, the temperature of the tank has dropped to 29 °C and, due to a leak, the pressure has dropped to 3.60 × 105 Pa. How many grams of chlorine gas have leaked out of the tank?
Chapter 14, Problem 24 GO A tank contains 12.9 g of chlorine gas (Cl2) at a...
Chapter 14, Problem 24 GO A tank contains 12.9 g of chlorine gas (Cl2) at a temperature of 83 °C and an absolute pressure of 5.40 × 105 Pa. The mass per mole of Cl2 is 70.9 g/mol. (a) Determine the volume of the tank. (b) Later, the temperature of the tank has dropped to 25 °C and, due to a leak, the pressure has dropped to 3.40 × 105 Pa. How many grams of chlorine gas have leaked out...
A steel tank contains 312 g of ammonia gs (NH3 with molar mass 17.0 g/mol) at...
A steel tank contains 312 g of ammonia gs (NH3 with molar mass 17.0 g/mol) at a pressure of 1.43 x 106 and a temperature of 80.6oC. (a) What is the volume of the tank in liters? (b) Later the temperature is 69.5oC and the pressure is 0.960 x 106 Pa. How many grams of gas have leaked out of the tank? (Ignore the thermal contraction of the tank.)
A welder using a tank of volume 7.30×10−2 m 3 fills it with oxygen (with a...
A welder using a tank of volume 7.30×10−2 m 3 fills it with oxygen (with a molar mass of 32.0 g/mol ) at a gauge pressure of 3.15×105 Pa and temperature of 38.1 ∘ C . Remember that the guage pressure of the gas in the tank is the difference between the absolute pressure of the gas inside the tank and the pressure outside the tank, in this case 1 atm. So the absolute pressure is equal to the guage...
A 18.0-L tank of carbon dioxide gas (CO2) is at a pressure of 9.60 ✕ 105...
A 18.0-L tank of carbon dioxide gas (CO2) is at a pressure of 9.60 ✕ 105 Pa and temperature of 21.0°C. (a) Calculate the temperature of the gas in Kelvin. K (b) Use the ideal gas law to calculate the number of moles of gas in the tank. mol (c) Use the periodic table to compute the molecular weight of carbon dioxide, expressing it in grams per mole. g/mol (d) Obtain the number of grams of carbon dioxide in the...
A 22.0-L tank of carbon dioxide gas (CO2) is at a pressure of 9.90 ? 105...
A 22.0-L tank of carbon dioxide gas (CO2) is at a pressure of 9.90 ? 105 Pa and temperature of 18.0°C. (a) Calculate the temperature of the gas in Kelvin. _______ K (b) Use the ideal gas law to calculate the number of moles of gas in the tank. mol (c) Use the periodic table to compute the molecular weight of carbon dioxide, expressing it in grams per mole. ______ g/mol (d) Obtain the number of grams of carbon dioxide...
Chlorine gas reacts with fluorine gas to form chlorine trifluoride. Cl2(g)+3F2(g)→2ClF3(g) A 2.45 L reaction vessel,...
Chlorine gas reacts with fluorine gas to form chlorine trifluoride. Cl2(g)+3F2(g)→2ClF3(g) A 2.45 L reaction vessel, initially at 298 K, contains chlorine gas at a partial pressure of 337 mmHg and fluorine gas at a partial pressure of 739 mmHg .Identify the limiting reactant and determine the theoretical yield of ClF3 in grams.
Consider a mole of an ideal monatomic gas, Xe, inside a container with rigid walls. The...
Consider a mole of an ideal monatomic gas, Xe, inside a container with rigid walls. The ideal gas is heated up as a flame is applied to the container’s exterior. The molar mass of Xe is 0.131 kg. The gas does not transfer any heat to the container. Answer the following questions. A.) Before the flame is lit, the pressure of the gas inside the container is 10.1x10^5 Pa and the temperature of the gas is 295 K. If at...
CO(g)+Cl2(g)⇌COCl2(g) Carbon monoxide and chlorine gas are allowed to react in a sealed vessel at 464...
CO(g)+Cl2(g)⇌COCl2(g) Carbon monoxide and chlorine gas are allowed to react in a sealed vessel at 464 ∘C . At equilibrium, the concentrations were measured and the following results obtained: Gas Partial Pressure (atm) CO 0.780 Cl2 1.22 COCl2 0.120 What is the equilibrium constant, Kp, of this reaction? Part B The following reaction was performed in a sealed vessel at 767 ∘C : H2(g)+I2(g)⇌2HI(g) Initially, only H2 and I2 were present at concentrations of [H2]=3.75M and [I2]=2.05M. The equilibrium concentration...
A gas sample enclosed in a rigid metal container at room temperature (20.0∘C) has an absolute...
A gas sample enclosed in a rigid metal container at room temperature (20.0∘C) has an absolute pressure p1. The container is immersed in hot water until it warms to 40.0∘C. What is the new absolute pressure p2? Express your answer in terms of p1. p2=_________________
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT