Question

A mass m at the end of a spring vibrates with a frequency of 0.88 Hz...

A mass m at the end of a spring vibrates with a frequency of 0.88 Hz . When an additional 660 g mass is added to m, the frequency is 0.56 Hz .

What is the value of m?

Express your answer using two significant figures.

Homework Answers

Answer #1

Thank you Dear....best of luck for your exams

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. If a violin string vibrates at 480 Hz as its fundamental frequency, what are the...
a. If a violin string vibrates at 480 Hz as its fundamental frequency, what are the frequencies of the first four harmonics? Enter your answers in ascending order separated by commas. b.The speed of waves on a string is 92 m/s . If the frequency of standing waves is 490 Hz , how far apart are two adjacent nodes? Express your answer to two significant figures and include the appropriate units. c. If two successive overtones of a vibrating string...
A 240 g mass attached to a horizontal spring oscillates at a frequency of 5.20 Hz...
A 240 g mass attached to a horizontal spring oscillates at a frequency of 5.20 Hz . At t =0s, the mass is at x= 6.80 cm and has vx =− 27.0 cm/s . Determine: The period. Enter your answer numerically to five significant figures. The angular frequency. Enter your answer numerically to five significant figures. The amplitude. Enter your answer numerically to five significant figures. The phase constant. Enter your answer numerically to four significant figures.
A) A mass on a spring vibrates in simple harmonic motion at a frequency of 4.0...
A) A mass on a spring vibrates in simple harmonic motion at a frequency of 4.0 Hz and an amplitude of 8.0 cm. If a timer is started when its displacement from equilibrium is a maximum (hence x = 8 cm when t = 0), what is the displacement of the mass when t = 3.7 s? B) A mass of 4.0 kg, resting on a horizontal, frictionless surface, is attached on the right to a horizontal spring with spring...
A pedestrian standing on the sidewalk heard a frequency of 845 Hz when an ambulance is...
A pedestrian standing on the sidewalk heard a frequency of 845 Hz when an ambulance is traveling away from him with a speed of 45.0 m/s. Speed of sound in air = 343 m/s A) what is the frequency of the ambulance siren? Express your answer using three significant figures. B) Then the ambulance stopped for a few seconds while sounding the siren. A driver in a car that is coming towards the ambulance heard a frequency of 995 Hz....
A pedestrian standing on the sidewalk heard a frequency of 850 Hz when an ambulance is...
A pedestrian standing on the sidewalk heard a frequency of 850 Hz when an ambulance is travelling away from him with a speed of 45.0 m/s m / s . Speed of the sound in air = 343 m/s Part A What is the frequency of the ambulance's siren? Express your answer using three significant figures. Part B Then the ambulance stopped for a few seconds while sounding the siren. A driver in a car that is coming towards the...
A 280-g object attached to a spring oscillates on a frictionless horizontal table with a frequency...
A 280-g object attached to a spring oscillates on a frictionless horizontal table with a frequency of 4.00 Hz and an amplitude of 25.0 cm. 1) Calculate the maximum potential energy of the system.(Express your answer to three significant figures.) 2) Calculate the displacement of the object when the potential energy is one-half of the maximum.(Express your answer to three significant figures.) 3) Calculate the potential energy when the displacement is 10.0 cm.(Express your answer to three significant figures.)
When a 0.770 kg mass oscillates on an ideal spring, the frequency is 1.32 Hz ....
When a 0.770 kg mass oscillates on an ideal spring, the frequency is 1.32 Hz . part a) What will the frequency be if 0.270 kg are added to the original mass? Try to solve this problem without finding the force constant of the spring. part b) What will the frequency be if 0.270 kg are subtracted from the original mass? Try to solve this problem without finding the force constant of the spring.
​A string is 6 m long and vibrates with a fundamental frequency of 2000 Hz. If...
​A string is 6 m long and vibrates with a fundamental frequency of 2000 Hz. If you fret down 1/3 ​of the way what is the new fundamental frequency? ​
A 2.0-mm-long string vibrates at its second-harmonic frequency with a maximum amplitude of 1.4 cmcm ....
A 2.0-mm-long string vibrates at its second-harmonic frequency with a maximum amplitude of 1.4 cmcm . One end of the string is at xxx =0cm=0cm. Find the oscillation amplitude at x =10cm. Express your answer to two significant figures and include the appropriate units. Find the oscillation amplitude at x =20cm. Express your answer to two significant figures and include the appropriate units. Find the oscillation amplitude at x =30cm. Express your answer to two significant figures and include the...
1. Given the force constant k=516.3 N/m, predict the absorption frequency (in Hz) of D35Cl in...
1. Given the force constant k=516.3 N/m, predict the absorption frequency (in Hz) of D35Cl in terms of Hz using format 4.00E10. atomic mass: D, 2.0141;  35Cl, 34.9689 continued of 1: convert the frequency from Hz to inverse centimeter cm-1. Enter a value without unit, with three significant figures continued of 1: continue with the last question, what is the zero-point energy ( J) of the oscillator? Please enter your answer with 3 significant figures.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT