Question

What is the increase in internal energy of the car and truck (thermal energy and deformation)?...

What is the increase in internal energy of the car and truck (thermal energy and deformation)?

Scenario One: A car of mass 2100 kg collides with a truck of mass 4900 kg, and just after the collision the car and truck slide along, stuck together, with no rotation. The car's velocity just before the collision was <31, 0, 0> m/s, and the truck's velocity just before the collision was <-10, 0, 26> m/s.

Scenario Two: A car of mass 1800 kg collides with a truck of mass 5100 kg, and just after the collision the car and truck slide along, stuck together, with no rotation. The car's velocity just before the collision was < 43, 0, 0 > m/s, and the truck's velocity just before the collision was < -22, 0, 20 > m/s. Use the concept of the center-of-momentum reference frame.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A car of mass 2500 kg collides with a truck of mass 4400 kg, and just...
A car of mass 2500 kg collides with a truck of mass 4400 kg, and just after the collision the car and truck slide along, stuck together, with no rotation. The car's velocity just before the collision was <31, 0, 0> m/s, and the truck's velocity just before the collision was <-13, 0, 24> m/s. b)what is the increase in internal energy of the car and truck (thermal energy and deformation)?
1. A 1000.0 kg car is moving at 20 km/h. If a 2000.0 kg truck has...
1. A 1000.0 kg car is moving at 20 km/h. If a 2000.0 kg truck has 25 times the kinetic energy of the car, how fast is the truck moving? 2. A car of mass 1005 kg collides head-on with a parked truck of mass 2010 kg. Spring mounted bumpers ensure that the collision is essentially elastic. If the velocity of the truck is 15 km/h (in the same direction as the car's initial velocity) after the collision, what was...
A truck with a mass of 1800 kg traveling 32 miles per hour collides with a...
A truck with a mass of 1800 kg traveling 32 miles per hour collides with a car (mass = 1100 kg) sitting at a stop sign. The two lock together and both cars slide into the intersection. Both drivers slam on the brakes in desperation. The coefficient of friction between the tires and the road is 0.58. a. What is the momentum of each car before the collision? b. What is their combined momentum after the collision? Justify your answer....
A car of mass 1478 kg collides head-on with a parked truck of mass 2000kg. Spring...
A car of mass 1478 kg collides head-on with a parked truck of mass 2000kg. Spring mounted bumpers ensure that the collision is essentially elastic. If the velocity of the truck is 17 km/h (in the same direction as the car's initial velocity) after the collision, what is the initial speed of the car?
A car with a mass 1500kg traveling East 10m/s collides with a truck with a mass...
A car with a mass 1500kg traveling East 10m/s collides with a truck with a mass 2000kg traveling West at 12m/s. After the collision, the two are stuck together. A) Find the final speed. B) How much kinetic energy was lost?
A 1000-kg car moving north with a speed of 25.0 m/s collides with a 2000- kg...
A 1000-kg car moving north with a speed of 25.0 m/s collides with a 2000- kg truck moving at an angle of 30° north of west with a speed of 20.0 mjs. After the collision, the car and the truck stuck together. What is the magnitude of their common velocity after the collision?
A 5.0 kg toy-car moving with a speed of 10.0 m/s in +x direction collides with...
A 5.0 kg toy-car moving with a speed of 10.0 m/s in +x direction collides with a 7.0 kg toy truck moving with a velocity of 15.0 m/s in a direction 37 degrees above +x direction. What is the velocity, both the magnitude and direction, of the two objects after the collision, if they remain stuck together?
Consider the inelastic collision of truck with a stationary car. The truck has a mass of...
Consider the inelastic collision of truck with a stationary car. The truck has a mass of 10,000 kg. The car has a mass of 2000 kg. If the truck comes into the collision at 16.3 m/s, how fast are they going both going after the collision assuming they stick together with the truck pushing the car?
A car travelling at 12 m/s into a stationary truck of about 10 times the cars...
A car travelling at 12 m/s into a stationary truck of about 10 times the cars mass. a. If the collision was completely inelastic, what velocity would the two travel at if the stuck together? b. If the collision was completely elastic, what would be the velocities of the car and truck after the collision? c. In order to exert a force of only 3500N on the truck during the collision, how much time would the collision have to take?
While driving down the street, your friend’s car was hit by a truck from behind.  The mass...
While driving down the street, your friend’s car was hit by a truck from behind.  The mass of your friend’s car is 1500 kg while the truck is 1800kg.  Your friend was driving 25 mph or 11.2 m/s. Assume that collision causes both cars to stick together and they do not supply additional power to the wheels after the collision. After the collision, the two cars slide to a stop. The coefficient of kinetic friction is 0.65 for the car and truck...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT