Question

3. Consider a mass m attached to a horizontal spring with spring constant k.  Suppose the mass...

3. Consider a mass m attached to a horizontal spring with spring constant k.  Suppose the mass is pulled a distance A from the equilibrium position.  

a. Find the total energy at the amplitude in terms of k and A

b. Using conservation of energy, find an expression for the maximum speed at the equilibrium position in terms of k, A and m

Homework Answers

Answer #1

given m = mass , k = spring constant , X = A = distance from equilibrium position

(a) total energy at the amplitude = kinetic energy + spring potential energy = 0 + (1/2) k A2 = 0.5kA2

(b) applying energy conservation principle

total energy at equilibrium position = total energy at stretched position

=> Kinetic energy at equilibrium + spring potential energy = kinetic energy at stretched position + spring potential energy at stretched position

=> 0.5mV2 + 0 = 0 + 0.5kA2

=> V2 = (kA2) / m

=>V = m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A horizontal spring attached to a wall has a force constant of k = 820 N/m....
A horizontal spring attached to a wall has a force constant of k = 820 N/m. A block of mass m = 1.20 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below (a) The block is pulled to a position xi = 5.40 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.40 cm from equilibrium. (b) Find the speed of the block...
A horizontal spring attached to a wall has a force constant of k = 720 N/m....
A horizontal spring attached to a wall has a force constant of k = 720 N/m. A block of mass m = 1.90 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi = 6.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 6.20 cm from equilibrium. (b) Find the speed of the block...
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k =...
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k = 100 N/m moves on a horizontal surface. At the initial moment in time, the mass is moving to the right at rate of 3.5 m/s and displacement of 0.2 m to the right of equilibrium. a) What is the angular frequency, period of oscillation, and phase constant? b) What is the amplitude of oscillation (Hint: Use energy.) and maximum speed of the spring-mass system?
A block with mass 0.382 kg is attached to a horizontal spring with spring constant k...
A block with mass 0.382 kg is attached to a horizontal spring with spring constant k = 1.28 N/m on a frictionless surface. The block is pulled 0.753 m from equilibrium and released. (a) What is the amplitude of the block's motion? (b) What is its period? (c) How long after release does the block take to first return to its equilibrium position? (d) What is its speed at that position? {b. 3.43 s, d. 1.38 m/s} a) A=0.753m b)...
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k...
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k = 270 N/m and is executing simple harmonic motion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s. (a) Calculate the amplitude of the motion. ____m (b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.] ____m/s
A block of mass m is attached to a massless spring having a spring constant k...
A block of mass m is attached to a massless spring having a spring constant k and moves on a horizontal surface. It oscillates along the x-axis about its equilibrium position at x = 0. There is a frictional force of constant magnitude f between the block and the surface. Suppose the mass is pulled to the right to x = A and released at time t=0. (a) Find the position of the mass as it reaches the left turning...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
An 81.9 g mass is attached to a horizontal spring with a spring constant of 3.5...
An 81.9 g mass is attached to a horizontal spring with a spring constant of 3.5 N/m and released from rest with an amplitude of 39.1 cm. What is the speed of the mass when it is halfway to the equilibrium position if the surface is frictionless? Answer in units of m/s.
A 2.2 kg object is attached to a horizontal spring of force constant k = 4.5...
A 2.2 kg object is attached to a horizontal spring of force constant k = 4.5 kN/m. The spring is stretched 10 cm from equilibrium and released. (a) Find the frequency of the motion. Hz (b) Find the period. s (c) Find the amplitude. m (d) Find the maximum speed. m/s (e) Find the maximum acceleration. m/s2 (f) When does the object first reach its equilibrium position? ms What is its acceleration at this time? m/s2
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...